

MUNICIPAL UTILITIES • 2500 Navy Drive • Stockton, CA 95206 • 209-937-8700 www.stocktongov.com

November 27, 2019

Ms. Elizabeth Lee, Unit Chief Municipal Storm Water Permitting Unit Central Valley Regional Water Quality Control Board 11020 Sun Center Drive, Suite 200 Rancho Cordova, CA 95670-6114

CITY OF STOCKTON AND COUNTY OF SAN JOAQUIN STORM WATER MANAGEMENT PROGRAMS 2016-2019 MID-TERM REPORT (ORDER NO. R5-2016-0040, NPDES PERMIT NO. CAS0085324)

Dear Ms. Lee:

For your review and consideration, the City of Stockton (City) and County of San Joaquin (County) are jointly submitting this 2016-2019 Mid-Term Report, in accordance with the National Pollutant Discharge Elimination System Permit (NPDES) and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (General Permit), Part V.F.5. The report reflects all programmatic storm water activities conducted during Fiscal Years 2016-2017 through 2018-2019, as well as all monitoring activities conducted during Fiscal Year 2018-2019.

A copy has been submitted to centralvalleysacramento@waterboards.ca.gov.

If you have any questions, please contact Jason Farnsworth of City of Stockton at (209) 937-8155 or <u>Jason.Farnsworth@stocktonca.gov</u> or Matt Zidar of San Joaquin County at (209) 953-7460 or <u>mzidar@sjgov.org</u>.

Sincerely,

CITY OF STOCKTON JOHN ABREW DIRECTOR OF MUNICIPAL UTILITIES

COUNTY OF SAN JOAQUIN MATT ZIDAR WATER RESOURCES DIRECTOR

Attachment: 2016-2019 Mid-Term Report

cc: Karen Ashby, Larry Walker Associates Rachel Warren, Larry Walker Associates

CITY OF STOCKTON & COUNTY OF SAN JOAQUIN

National Pollutant Discharge Elimination System (Order Nos. R5-2016-0040-002 and R5-2016-0040-003) Municipal Stormwater Program 2016-2019 Mid-Term Report

prepared by LARRY WALKER ASSOCIATES

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations. [40 CFR 122.22(d)]

Executed on the 20^{th} day of November 2019, at the City of Stockton.

uffores

John Abrew City of Stockton Director of Municipal Utilities

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted.

Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and imprisonment for knowing violations. [40 CFR 122.22(d)]

Executed on the 18^{K} day of November 2019, at the County of San Joaquin.

Kris Balaji, PMP, P.E. County of San Joaquin Director of Public Works

Table of Contents

1	Introduction1				
2	Implementation Statement				
	2.1 S	status of SWMP Milestones			
3	Fiscal Analysis				
4	Stormwater Quality Monitoring Program and Analysis of Monitoring Results				
	4.1 V	Vaterbody and Drainageshed Monitoring11			
	4.1.1	Storm Tracking and Selection			
	4.1.2	Outfall and Receiving Water Monitoring			
	4.1.3	Rainwater/Atmospheric Deposition Monitoring			
	4.1.4	Sediment Toxicity and Sediment Chemistry			
	4.1.5	Water Column Toxicity Monitoring			
	4.2 I	Data Quality Evaluation			
	4.3 I	Delta Regional Monitoring Program			
	4.4 T	Fotal Maximum Daily Loads			
	4.4.1	Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5-2006-0061)			
	4.4.2	Central Valley Pesticide TMDLs			
	4.4.3	Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030) 44			
	4.4.4	Delta Methylmercury TMDL (Resolution No. R5-2010-0043)			
	4.4.5	Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)			
	4.4.6	Trash Implementation			
5	Progra	m Implementation			
	5.1 0	City Program implementation			
	5.1.1	Illicit Discharges (ID)			
	5.1.2	Public Outreach (PO)			
	5.1.3	Public Outreach Implementation (PO3)			
	5.1.4	Municipal Operations (MO)			
	5.1.5	Industrial and Commercial (IC)			
	5.1.6	Training (IC5)			
	5.1.7	Construction (CO)			

i

5.1.8	Planning and Land Development (LD)73
5.2 0	County Program Implementation78
5.2.1	Illicit Discharges (ID)
5.2.2	Public Outreach (PO)
5.2.3	Public Participation (PO1)
5.2.4	Public Outreach Implementation (PO3)
5.2.5	Municipal Operations (MO)
5.2.6	Industrial and Commercial (IC)
5.2.7	Construction (CO)
5.2.8	Planning and Land Development (LD)
6 Effecti	veness Assessment: Short-Term101
6.1 C	City Effectiveness Assessment
6.1.1	Illicit Discharge Program Effectiveness Assessment
6.1.2	Public Outreach Program Effectiveness Assessment
6.1.3	Municipal Operations Program Effectiveness Assessment
6.1.4	Industrial and Commercial Program Effectiveness Assessment
6.1.5	Construction Program Effectiveness Assessment
6.1.6	Planning and Land Development Program Effectiveness Assessment
6.2 C	County Effectiveness Assessment
6.2.1	Illicit Discharge Program Effectiveness Assessment
6.2.2	Public Outreach Program Effectiveness Assessment
6.2.3	Municipal Operations Program Effectiveness Assessment
6.2.4	Industrial and Commercial Program Effectiveness Assessment
6.2.5	Construction Program Effectiveness Assessment
6.2.6	Planning and Land Development Program Effectiveness Assessment
7 Propos	ed SWMP Modifications147

List of Tables

Table 1. Annual Reporting Schedule (Due Oct 1)	2
Table 2. Mid-Term Report Requirements	2
Table 3. 2016-2019 Fiscal Analysis, City of Stockton	5
Table 4. 2016-2019 Fiscal Analysis, County of San Joaquin	6
Table 5. 2016-2019 Funding Sources, County of San Joaquin	7
Table 6. AMP Staggered Waterbody Monitoring Schedule	. 10
Table 7. Summary of Constituents Monitored by Waterbody from 2015-2019	. 10
Table 8. Smith Canal Monitoring Sites and Constituents Monitored	. 14
Table 9. 2018-2019 Monitoring Program Accomplishments	. 15
Table 10. Details of 2018-2019 Wet Weather Monitoring Events	. 19
Table 11. 2018-2019 Outfall and Receiving Water Monitoring Sites on Smith Canal	. 20
Table 12. Sites Sampled and Type of Sample Collected in 2018-2019	. 21
Table 13. Constituent Analysis for Outfall and Receiving Water Monitoring at Historical Sites	s 22
Table 14. Sediment Chemistry Constituents to be Monitored	. 38
Table 15. 2018-2019 Sediment Toxicity Results at Smith Canal	. 39
Table 16. Follow-Up Sediment Chemistry Results for Event DW38 at Smith Canal	. 40
Table 17. Definitions of Commonly Used QA/QC Qualifiers and Instances of Application	. 42
Table 18. Methylmercury Control Study Schedule	. 45
Table 19. Illicit Discharge Program Control Measures (City)	. 51
Table 20. Detection of Illicit Discharges (City)	. 52
Table 21. Illegal Connections Identification (City)	. 52
Table 22. Total Number of Illicit Discharges and Illegal Connections (City)	. 53
Table 23. Materials in Verified Incidents (City)	. 53
Table 24. Illicit Discharge Program Enforcement Actions Taken (City)	. 54
Table 25. Illicit Discharge Program Repeat Offenders (City)	. 54
Table 26. Illicit Discharge Program Trainings Attended (City)	. 55
Table 27. Public Outreach Program Control Measures (City)	. 56
Table 28. Stream Cleanup Events (City and County)	. 57
Table 29. Household Hazardous Waste (City and County)	. 57
Table 30. Public Outreach Program Implementation (City)	. 58
Table 31. Municipal Operations Program Control Measures (City)	. 59

i

Table 32. Summary of SSOs (City)	60
Table 33. Summary of Fertilizers Applied (City)	60
Table 34. Catch Basin, Pump Station, and Detention Basin Inspections (City)	61
Table 35. Catch Basin, Storm Drain, Pump Station, and Detention Basin Cleaning (City)	61
Table 36. Number of Catch Basins Stenciled (City)	62
Table 37. Large Events Required to Comply (City)	62
Table 38. Trash/Material Collected Special Events (City)	63
Table 39. Street Sweeping and Green Waste Collection Activities (City)	63
Table 40. Municipal Operations Program Trainings Attended (City)	64
Table 41. Industrial and Commercial Program Control Measures (City)	65
Table 42. Summary of Industrial Inspections (City)	66
Table 43. Summary of Commercial Inspections (City)	66
Table 44. BMP Fact Sheets Distributed During Industrial/Commercial Inspections (City)	67
Table 45. Industrial and Commercial Program Enforcement Actions Taken (City)	67
Table 46. Industrial and Commercial Program Repeat Offenders (City)	68
Table 47. Industrial and Commercial Program Trainings Attended (City)	69
Table 48. Construction Program Control Measures (City)	70
Table 49. BMP Fact Sheets Distributed During Construction Inspections (City)	70
Table 50. Summary of Construction Site Inspections (City)	71
Table 51. Construction Program Enforcement Actions Taken (City)	. 71
Table 52. Construction Program Repeat Offenders (City)	72
Table 53. Construction Program Trainings Attended (City)	72
Table 54. Planning and Land Development Program Control Measures (City)	73
Table 55. Project Plans and Priority Projects Reviewed (City)	74
Table 56. Post-Construction BMPs Implemented in Priority Projects (City)	75
Table 57. Proprietary Treatment Control Measures in Projects (City)	76
Table 58. Post-Construction BMP Inspections and Enforcement (City)	77
Table 59. Planning and Land Development Program Trainings Attended (City)	77
Table 60. Illicit Discharge Program Control Measures (County)	78
Table 61. Detection of Illicit Discharges (County)	79
Table 62. Total Number of Illicit Discharges and Illegal Connections (County)	80
Table 63. Materials Identified in Verified Incidents (County)	80

Table 64. Illicit Discharge Program Enforcement Actions Taken (County)	. 81
Table 65. Illicit Discharge Program Repeat Offenders (County)	. 81
Table 66. Illicit Discharge Program Trainings Attended (County)	. 82
Table 67. Public Outreach Program Control Measures (County)	. 83
Table 68. Stream Cleanup Events (City and County)	. 84
Table 69. Household Hazardous Waste (City and County)	. 84
Table 70. Public Outreach Program Implementation (County)	. 85
Table 71. Municipal Operations Program Control Measures (County)	. 86
Table 72. Summary of SSOs (County)	. 87
Table 73. Catch Basin, Pump Station, and Detention Basin Inspections (County)	. 88
Table 74. Catch Basin, Storm Drain, Pump Station, and Detention Basin Cleaning (County)	. 88
Table 75. Number of Catch Basins Stenciled (County)	. 89
Table 76. Large Events Required to Comply (County)	. 89
Table 77. Street Sweeping and Green Waste Collection Activities (County)	. 89
Table 78. Municipal Operations Program Trainings Attended (County)	. 90
Table 79. Industrial and Commercial Program Control Measures	. 91
Table 80. Summary of Industrial Inspections (County)	. 92
Table 81. Summary of Commercial Inspections (County)	. 92
Table 82. BMP Fact Sheets Distributed During Industrial/Commercial Inspections (County)	. 93
Table 83. Industrial and Commercial Program Trainings Attended (County)	. 93
Table 84. Construction Program Control Measures (County)	. 94
Table 85. Construction Program Trainings Attended (County)	. 95
Table 86. Planning and Land Development Program Control Measures (County)	. 96
Table 87. Project Plans and Priority Projects Reviewed (County)	. 97
Table 88. Post-Construction BMPs Implemented in Priority Projects (County)	. 97
Table 89. Post-Construction BMP Inspections and Enforcement (County)	. 98
Table 90. Planning and Land Development Program Trainings Attended (County)	. 99

iii

Table of Figures

Figure 1. Smith Canal Monitoring Sites and Discharge Site Drainagesheds	13
Figure 2. 2018-2019 Precipitation at Stockton Metropolitan Airport and Captured Monitoring Events	17
Figure 3. Smith Canal 2018-2019 Dissolved Oxygen Concentrations (mg/L)	27
Figure 4. Smith Canal 2018-2019 E. coli and Fecal Coliform Concentrations (MPN/100 mL) 2	28
Figure 5. Smith Canal 2018-2019 Methylmercury and Total Mercury Concentrations (ng/L) 2	29
Figure 6. Smith Canal 2018-2019 Chlorpyrifos Concentrations (ng/L)	30
Figure 7. Smith Canal 2018-2019 Pyrethroid Concentrations (ng/L)	31
Figure 8. Rainwater/Atmospheric Deposition Monitoring Locations	33
Figure 9. 2018-2019 Rainwater/Atmospheric Deposition Monitoring Results	35
Figure 10. ID1 – Number of IDDE Complaints from Phone/AskStockton (City) 10)3
Figure 11. ID1 – Field Crew Inspections (Percent Verified) (City) 10)4
Figure 12. ID3 – Water Pollution Complaints: Percent Identified Materials (City) 10)5
Figure 13. PO1 – Community Stream Clean Up Events 10)6
Figure 14. PO1 – Stream Clean Up Trash Removal)7
Figure 15. PO1 – HHW Used Oil & Filters Collected 10)8
Figure 16. PO1 – HHW Mercury Collected 10)9
Figure 17. PO1 – Total HHW Collected	10
Figure 18. MO1 – Sanitary Sewer Overflows (City)11	11
Figure 19. MO1 – Percent Sanitary Sewer Overflows Not Reaching Storm Drain or Receiving Waters (City)	12
Figure 20. MO4 – Fertilizer Application (City)	13
Figure 21. MO4 – Fertilizer Application per Acre (City)	14
Figure 22. MO5 – Catch Basin Maintenance (City)	15
Figure 23. MO5 – Pump Station Maintenance (City)11	16
Figure 24. MO5 – Special Use Provisions	17
Figure 25. MO6 – Street Sweeping (City)	18
Figure 26. IC1 & IC2 – Industrial Facilities and Inspections (City)	19
Figure 27. IC2 – Industrial Facility Inspection Results (City)	20
Figure 28. IC1 & IC2 – Commercial Facilities and Inspections (City)	21
Figure 29. IC2 – Commercial Facility Inspection Results (City)	22

i

Figure 30. CO5 – Percent Follow-up Inspections (City) 123
Figure 31. CO7 – Pre- and Post-Training Survey Results (City) 124
Figure 32. LD4 – Post-Construction BMPs (City) 125
Figure 33. ID1 – Number of IDDE Complaints from Hotline (County) 126
Figure 34. ID1 – Field Crew Inspections (Percent Verified) (County) 127
Figure 35. ID3 – Water Pollution Complaints: Percent Identified Materials (County) 128
Figure 36. PO1 – Community Stream Clean Up Events 129
Figure 37. PO1 – Stream Clean Up Trash Removal
Figure 38. PO1 – HHW Used Oil & Filters Collected 131
Figure 39. PO1 – HHW Mercury Collected 132
Figure 40. PO1 – Total HHW Collected
Figure 41. MO1 – Sanitary Sewer Overflows (County)
Figure 42. MO4 – Fertilizer Application (County)
Figure 43. MO4 – Fertilizer Application per Acre (County)
Figure 44. MO5 – Catch Basin Maintenance (County) 137
Figure 45. MO5 – Pump Station Maintenance (County) 138
Figure 46. MO6 – Street Sweeping (County)
Figure 47. IC1 & IC2 – Industrial Facilities and Inspections (County) 140
Figure 48. IC2 – Industrial Facility Inspection Results (County) 141
Figure 49. IC1 & IC2 – Commercial Facilities and Inspections (County) 142
Figure 50. IC2 – Commercial Facility Inspection Results (County) 143
Figure 51. CO7 – Pre- and Post-Training Survey Results (CO7) 144
Figure 52. LD4 – Post-Construction BMPs (County) 145

ii

List of Appendices

Appendix A. NOI Work Plan as submitted November 1, 2016 Appendix B. 2018-2019 Monitoring Results Appendix C. 2018-2019 Data Summary Tables Appendix D. 2018-2019 Sediment Toxicity Results Appendix E. 2018-2019 Water Column Toxicity Results

1 Introduction

The fourth term, National Pollutant Discharge Elimination System (NPDES) and Waste Discharge Requirements (WDR) General Permit for Discharges from Municipal Separate Storm Sewer Systems (MS4) (Region-wide Permit) was adopted June 23, 2016. The City of Stockton (City) and County of San Joaquin (County) submitted a Notice of Intent (NOI) application package in accordance with Part V.B.1 of the Region-wide Permit on November 1, 2016 and received the Notice of Applicability (NOA) from the Central Valley Regional Water Quality Control Board (Regional Water Board) on November 30, 2016.¹ The NOI package included the applicable forms, a preliminary prioritization approach, and a Work Plan outlining how the current Stormwater Management Plan (SWMP) and any modifications will be implemented until a new SWMP is submitted to and approved by the Regional Water Board (anticipated in 2020).

A SWMP was developed for and is being implemented within the jurisdictional limits of the City and the urbanized areas of the County² regulated under the Region-wide Permit.³ The SWMP represents the strategy for controlling the discharge of pollutants from the MS4 to the Maximum Extent Practicable (MEP) and includes a wide range of Best Management Practices (BMPs). This Annual Report focuses on the control measures and BMPs included in the currently approved SWMP.

On May 30, 2017, the City and County submitted their *Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area* (Assessment and Prioritization). This document identified the priority water quality constituents (PWQCs)—indicator bacteria, methylmercury, dissolved oxygen, and trash—that will be the focus of the program and the revised SWMP. The City and County met with Regional Water Board staff in June 2017 and received written comments on July 2, 2018. A revised Assessment and Prioritization was submitted on October 2, 2018.

On July 1, 2019, the City and County submitted a *Reasonable Assurance Analysis* (RAA), which built upon the Assessment and Prioritization and was developed to satisfy the requirements described in Region-wide Permit Parts V.E.3.a (*Identify Milestones, Strategies, and Activities for Storm Water Management Program*) and V.E.3.b (*Reasonable Assurance Analysis*). The revised SWMP will be structured to address the identified PWQCs and include milestones, strategies, and activities that will, over time (as identified through the RAA), ensure that the City's and the County's discharges will not cause or contribute to exceedances of applicable water quality objectives (WQOs) within the relevant receiving waters. The RAA results will assist in guiding the revision of the SWMP and identifying prioritized program elements, strategies, and activities that can be implemented based on available capital and operations and maintenance resources.

The Region-wide Permit requires Annual Reports (Provision V.F.4), Mid-Term Reports, and End-Term Reports (Provision V.F.5). The Mid-Term and End-Term Reports serve as the Annual Report for the years submitted. Effectiveness assessments (Provision V.E.5) are conducted as

¹ City of Stockton under Order No. R5-2016-0040-002; County of San Joaquin under Order No. R5-2016-0040-003.

² This jurisdictional area is also referred to as the Stockton Urbanized Area (SUA).

³ The SWMP was approved by the Central Valley Regional Water Quality Control Board on October 9, 2009 (Resolution R5-2009-0105).

part of the Mid-Term and End-Term Reports. A summary of the annual reporting schedule is provided in **Table 1**.

 Table 1. Annual Reporting Schedule (Due Oct 1)

Permit/Fiscal Year	Report Type & Reporting Period
Year 1 (2016-2017)	Annual Report (2016-2017) Complete
Year 2 (2017-2018)	Annual Report (2017-2018) Complete
Year 3 (2018-2019)	Mid-Term Report (2016-2019)
Year 4 (2019-2020)	Annual Report (2019-2020)
Year 5 (2020-2021)	End-Term Report (2016-2021)

This 2016-2019 Mid-Term Report is being submitted in accordance with Region-wide Permit Provisions V.F.4 and V.F.5 and includes the items listed in **Table 2**.

 Table 2. Mid-Term Report Requirements

Report Requirement	Location	
Provision V.F.4		
(a.i) A statement certifying that the Storm Water Management Program and Work Plan were implemented as approved.	Section 2	
(a.ii) A summary of activities and tasks scheduled to be implemented in the upcoming year. If the Work Plan is still being implemented as described from the previous year, the Permittee may refer to the Work Plan.	Section 2	
(a.iii) Any proposed minor modifications to the Storm Water Management Program; or any proposed Work Plan Modification.	Section 7	
(a.iv) A completed certification statement, in accordance with the signatory requirements in Attachment H (Standard Permit Provisions and General Provisions).	Certification Statements	
(c) Provision of water quality data collected.	Appendix C	
(d) Additional requirements described in 40 CFR 122.42(c) (Attachment H, Standard Permit Provisions and General Provisions).	Certification Statements Section 3 Section 4 & Appendix B, D Section 5	
Provision V.F.5		
(a) Cumulative summary of the Storm Water Management Activities conducted.	Section 5	
(b) Status of progress towards attainment of SWMP milestones and implementation of activities.	Section 2	
(c) Cumulative summary of the monitoring data.	Section 4	

Report Requirement	Location
(d) A short-term SWMP effectiveness assessment (Part V.E.5) and the results of the monitoring assessment (Part V.E.1).	Section 6 Section 4
(f) The progress in implementing the Work Plan submitted with the SWMP, including the following:	N/A ^[a]
(1) Progress toward achieving the interim goals for the PWQCs for the Jurisdictional Runoff Area.	N/A
(2) Water quality improvement strategies implemented and/or no longer implemented during the current and past reporting period, and those planned to be implemented in the next reporting period.	N/A
(3) Proposed modifications to the water quality improvement strategies and their rationale.	N/A
(4) Approved modifications or updates incorporated into the SWMP and implemented in the Jurisdictional Runoff Area.	N/A
(5) Any other proposed modifications or updates to the SWMP.	N/A
(g) Fiscal analysis identifying source of funds and expenditures.	Section 3

[a] Not Applicable (N/A) because the Mid-Term Report was developed during the period when the revised SWMP and Work Plan are in progress (Section 2).

2 Implementation Statement

The City and County have developed a comprehensive approach for implementing the stormwater program within the Stockton Urbanized Area (SUA) consistent with the intent of the 2009 SWMP (and modifications thereto) and as described by the Work Plan submitted to (and as approved by) the Regional Water Board as a part of the NOI application package (NOI Work Plan).

During 2016-2019, the City and County implemented the stormwater program within the SUA consistent with the intent of the SWMP and as outlined by the NOI Work Plan submitted with the NOI package in November 2016 and included as **Appendix A**. Not all Control Measures included in the NOI Work Plan are reported on within **Section 5** and **Section 6** because there is no implementation data specifically collected for those activities (e.g., Program Coordination). During 2019-2020, until a revised SWMP and Work Plan are approved, the City and County will continue to implement the stormwater program within the SUA as outlined by the NOI Work Plan.

2.1 STATUS OF SWMP MILESTONES

The Region-wide Permit (Part V.F.5.b) requires that the status of SWMP milestones be documented in the Mid-Term and End-Term Reports:

b. Status of progress towards attainment of SWMP milestones and implementation of the strategies, and activities. If any SWMP milestones or final dates for attainment were not met, the Permittee shall provide detailed explanations.

The Mid-Term Report has been developed during the period when the RAA (submitted July 1, 2019) is under review by the Regional Water Board, and the revised SWMP is in progress. As such, SWMP milestones have not yet been developed, and the Mid-Term Report instead focuses on the implementation of the current SWMP and its associated Control Measures and Performance Standards.

3 Fiscal Analysis

The City and County assessed the current NPDES expenditures, as well as the projected expenditures for the next fiscal year. The City's fiscal analysis for this year and the previous two years is provided in **Table 3**; the County's fiscal analysis is provided in **Table 4**.

Table 3. 2016-2019 Fiscal Analysis, City of Stockton

Due group Element	Expenditures During Fiscal Year			Estimated Budget for
Program Element	2016-2017	2017-2018	2018-2019	Fiscal Year 2019-2020 ^[a]
Program Management: Staff salaries, utility billing, phone charges, computer software/rentals, memberships, permit fees, indirect cost allocations, training, consultant contracts	\$1,680,188	\$ 1,478,952	\$ 2,122,578	\$ 1,714,511
Public Outreach : Staff salaries, industrial, commercial, and residential programs, including media and community events	\$ 69,315	\$ 4,008	\$ 9,167	\$ 20,464
Municipal Operations: Staff salaries, CIPs, and Storm Drain System Cleaning and Maintenance (includes Illicit Discharges, illegal connections mitigation, and clean-up) ^[b]	\$ 3,010,371	\$ 2,948,593	\$ 4,221,379 ^[c]	\$ 4,082,283
Industrial and Commercial: Staff salaries, inspections, and follow- up inspections ^[d]	\$ 61,170 ^[e]	\$ 3,281	\$ 40,404	\$ 54,683
Construction: Staff salaries, outreach	\$ 61,170 ^{[e][f]}	\$ 3,281 ^[g]	\$ 3,493	\$ 50,142
Planning and Land Development: Staff salaries	\$ 93,875	\$ 73,639	\$ 56,196	\$ 62,084
Water Quality Monitoring Programs: Includes Baseline Monitoring Program, Bioassessment Analysis, Smith Canal Bathymetry Study, Detention Basin Monitoring, BMP Effectiveness Study, Sediment Toxicity, Smith Canal/Mosher Slough Low DO13267 Letter Monitoring	\$ 288,730	\$ 257,441	\$ 480,908	\$ 309,171
Water Quality Based Programs: Includes Pesticide, Pathogen, Mercury, and DO Work Plans and Implementation	\$ 63,299	\$ 54,998	\$ 87,305	\$ 28,990
TOTAL	\$ 5,328,118	\$ 4,824,191	\$ 7,021,430	\$ 6,389,328

[a] Annually, the City breaks the overall budget down into individual Program Element expenditures. The City has developed and is implementing a consistent methodology for tracking stormwater program expenditures.

[b] Facility Pollution Prevention Plans (FPPPs) are paid for out of Public Works budget and are not a Stormwater Expense.

[c] As the City enhanced the consistency of its operations, CIP costs were incorporated into the Municipal Operations budget.

[d] The Industrial and Commercial Inspection Program is conducted in-house by Stormwater and Environmental Control Staff.

[e] The cost to develop a Websoft Inspection Tracking Database in 2016-2017 are divided evenly between the Industrial/Commercial and Construction program elements.

[f] Business and Construction outreach expenditures in 2016-2017 are included in the Public Outreach budget

[g] During the 2017-2018 reporting year, the City reorganized staffing positions to better align with permit objectives. During this process, the staff position for construction site inspector was vacant; therefore, there was no salary expenditure.

The City's stormwater program is funded primarily by a storm drain maintenance or user fee. The fee is <u>\$2.10/month per Equivalent</u> <u>Residential Unit</u>.

Drogram Flomont	Expe	Estimated Budget for Fiscal		
Program Element	2016-2017	2017-2018 ^[a]	2018-2019 ^[b]	Year 2019-2020 ^[c]
Program Management	\$ 121,995	\$ 87,437	\$ 386,954	\$ 600,000
Illicit Discharges	\$ 14,528	\$ 10,670	\$ 1,506	\$ 10,000
Public Outreach	\$ 26,210	\$ 11,076	\$ 32,896	\$ 37,000
Municipal Operations	\$ 32,718	\$ 53,184 ^[d]	\$ 19,459	\$ 22,000
Industrial and Commercial	\$ 28,344	\$ 34,213	\$ 25,729	\$ 30,000
Construction ^[e]	\$ 20,668	\$ 7,676	\$ 15,480	\$ 16,000
Planning and Land Development	\$ 10,610	\$ 12,344	\$ 5,589	\$ 10,000
Water Quality Monitoring Program	\$ 64,215	\$ 22,847	\$ 102,099	\$ 143,000
Water Quality Based Programs	\$ 5,441	\$ 1,987	[f]	[f]
Program Implementation, Assessment, and Reporting	\$ 137,375	\$ 149,549	[9]	[9]
TOTAL	\$ 462,105	\$ 390,983	\$ 589,712	\$ 868,000

 Table 4. 2016-2019 Fiscal Analysis, County of San Joaquin

[a] Actual expenditures for fiscal year 2017-2018 do not reflect the County's shared costs of co-permittee expenditures with the City of Stockton; therefore, County expenditures in several program elements are understated.

[b] Actual expenditures for fiscal year 2018-2019 do not reflect the County's shared costs of co-permittee expenditures with the City of Stockton; however, they do include the County's 2015-2016 shared costs of the co-permittee expenditures with the City of Stockton.

[c] Estimated budget for fiscal year 2019-2020 assumes the payment of co-permittee costs to the City for fiscal years 2017-2018 and 2018-2019, and that payment of the 2019-2020 shared costs will be expensed in the subsequent year, due to the arrears billing.

[d] 2017-2018 expenditures for use of a second, new VacCon Truck for storm drain cleaning, a Stormwater expense, have been included in 2017-2018 reporting and are paid from the Road Maintenance budget.

[e] Responsibility for reviewing and implementing Stormwater Pollution Prevention Plan (SWPPP) Inspections for the San Joaquin County Road Projects were transferred to the Field Engineering division, which is responsible for construction activities for the department. Expenditures for reviewing and implementing SWPPPs were absorbed by the Field Engineering Division budget and were not available to report along with Stormwater expenses.

[f] Effective in fiscal year 2018-2019, actual expenditures associated with Water Quality Based Programs are reflected and reported in the Water Quality Monitoring Program expenditures.

[g] Effective in fiscal year 2018-2019, actual expenditures associated with Program Implementation, Assessment, and Reporting are reflected and reported in the Program Management expenditures.

The County's funding sources are summarized in Table 5.

Source	Funding for Fiscal Year 2016-2017, by Percentage	Funding for Fiscal Year 2017-2018, by Percentage	Funding forFunding forFiscal YearFiscal Year2017-2018, by2018-2019, byPercentagePercentage	
Assessment Fee/Special District Fund (Fee \$35/parcel)	78.63%	76.41%	78.35%	82.29%
Inspection/plan check fees	9.63%	10.34%	13.21%	9.40%
Miscellaneous Revenue – Interest Income	2.04%	3.68%	5.87%	5.59%
Operating Transfers	9.70%	9.56%	2.58%	2.72%

Table 5. 2016-2019 Funding Sources, County of San Joaquin

The County's stormwater program is funded primarily by a storm drain maintenance or user fee assessed at \$35/year per Equivalent Residential Unit.

4 Stormwater Quality Monitoring Program and Analysis of Monitoring Results

Provision V.E of the Region-wide Permit requires monitoring of urban runoff and receiving waters. In accordance with the previous permit, the City and County received approval from the Regional Water Board in 2015 for conducting an Alternative Monitoring Program (AMP).⁴ The AMP is consistent with the proposed monitoring program from the Report of Waste Discharge (June 2012 ROWD),⁵ meets the objectives of the Region-wide Permit, directs resources to the most critical water quality issues, and collects data to support management decisions to address those issues.

The primary objective of the AMP is to focus on Pollutants of Concern (POCs) as identified within the June 2012 ROWD and implement an intensive monitoring approach to determine the source(s) of pollutants in urban discharges. In addition to the AMP, the City and County were approved to participate in the Delta Regional Monitoring Program (Delta RMP) in lieu of conducting some of the local water quality monitoring.⁶

As a result, the revised monitoring program was initiated during the 2015-2016 reporting period and has been implemented since that time. In addition, the AMP will form the basis of the monitoring program that will be submitted as a part of the revised SWMP required by the Region-wide Permit (anticipated to be submitted in 2020). When the SWMP is revised, the monitoring program will shift its focus from the POCs to the PWQCs identified in the Assessment and Prioritization.

The monitoring program is a focused effort conducted within six (6) key water bodies on a rotating basis. The schedule for the staggered waterbody monitoring is shown in **Table 6**. The monitoring conducted since 2015 is summarized below:

- 2015-2016: Monitoring occurred on Mosher Slough, as reported in the *Municipal Stormwater Program 2015-2016 Annual Report;*
- 2016-2017: Monitoring occurred on the Calaveras River, as reported in the *Municipal Stormwater Program 2016-2017 Annual Report;*
- 2017-2018: Monitoring occurred on Duck Creek, as reported in the *Municipal Stormwater Program 2017-2018 Annual Report*; and
- 2018-2019: Monitoring occurred on Smith Canal, as reported in this 2016-2019 Mid-Term Report.

⁴ See City of Stockton and County of San Joaquin. Submittal of Alternative Stormwater Monitoring Program (Order No. R5-2015-0024). June 10, 2015; Central Valley Regional Water Quality Control Board. Approval of City of Stockton and County of San Joaquin's 27 October Alternative Monitoring Program. 4 November 2015.

⁵ National Pollutant Discharge Elimination System Municipal Stormwater Program – *Report of Waste Discharge & Proposed Stormwater Management Plan*, June 2012 (Section 2.7; Tables 2-42, 2-43, 2-44, 2-45, 2-46, and 2-47).

⁶ Central Valley Regional Water Quality Control Board. Approval to Allow the City of Stockton and County of San Joaquin to Reduce Local Water Quality Monitoring and Participate in the Delta Regional Monitoring Program. 4 November 2015.

Waterbody	2015-2016	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021
Mosher Slough ^[a]						
Calaveras River ^[a]						
Duck Creek ^[a]						
Smith Canal ^{[a][b]}						
Mormon Slough						
Five-Mile Slough						

Table 6. AMP Staggered Waterbody Monitoring Schedule

[a] Historical monitoring locations

[b] Blue indicates most recent year's monitoring location

Monitoring results for each previous fiscal year have been summarized in Annual Reports, as noted above. Constituents monitored for each waterbody are summarized in **Table 7**. A comprehensive summary of all waterbody monitoring will be included in the End-Term Report.

	Monitoring	Waterbody				
Constituents Monitored	Туре	Mosher Slough	Calaveras River	Duck Creek	Smith Canal	
Full suite of constituents (Table 13)	Water quality	х	Х	×	Х	
Dissolved oxygen	Water quality	Х	Х	Х	Х	
Methylmercury and mercury	Water quality	x	х	x	х	
E. coli & fecal coliform	Water quality	X X		Х	Х	
Chlorpyrifos and pyrethroids	Water quality	х	Х	×	Х	
Sediment toxicity & sediment chemistry	Sediment	х	Х	x	Х	
Water column toxicity	Water column	Х	Х	Х	Х	

Table 7. Summary of Constituents Monitored by Waterbody from 2015-2019

4.1 WATERBODY AND DRAINAGESHED MONITORING

The monitoring conducted for 2018-2019 at Smith Canal is summarized below.

Located in the mid-western portion of the SUA, Smith Canal is a tidally influenced, shallow, east-west constructed freshwater slough that extends approximately 2.6 miles east from its confluence with the San Joaquin River to its upstream terminus at Yosemite Lake in central Stockton. The canal has an average depth of four to six feet (with a ten-

foot maximum depth at the mouth) and an approximate ebb to flood stage difference of up to four feet.

Land use in the Smith Canal watershed is approximately half residential, with roads, highways, streets and commercial comprising the majority of the remaining land use.

Monitoring sites are shown in **Figure 1**. The constituents monitored at each site are identified in **Table 8**. The full list of constituents (**Table 13**) was monitored at the historical locations, SC-1 and SC-1R. Monitoring at other locations focused on the POCs within the Smith Canal drainageshed, which include:

- Indicator bacteria (E. coli and fecal coliform); and
- Pesticides (chlorpyrifos and pyrethroids).

Constituents identified in the Assessment and Prioritization as PWQCs were also monitored at the other locations:

- Dissolved oxygen (DO); and
- Methylmercury.

Figure 1. Smith Canal Monitoring Sites and Discharge Site Drainagesheds

Constituents Monitored	Monitoring Type	Sites Monitored					
		SC-1 ^[a]	SC-1R ^[a]	SC-55	SC-55R	SC-56	SC-56R
Full suite of constituents (Table 13)	Water quality	С	G				
Dissolved oxygen	Water quality	G	G	G	G	G	G
Methylmercury and mercury	Water quality	G	G	G	G	G	G
E. coli & fecal coliform	Water quality	G	G	G	G	G	G
Chlorpyrifos and pyrethroids	Water quality	G	G	G	G	G	G
Sediment toxicity & sediment chemistry ^[b]	Sediment		Sed ^[c]				
Water column toxicity	Water column		G				

Table 8. Smith Canal Monitoring Sites and Constituents Monitored

G = Grab

C = Composite

Sed = Sediment

[a] Historical Monitoring Site

[b] Follow-up testing of sediment chemistry was performed when toxicity was determined to be statistically significant and a greater than or equal to 50% increase in *Hyalella Azteca* mortality was observed.

[c] Sediment toxicity was sampled at SC-5R.
Monitoring activities completed during 2018-2019 are summarized in **Table 9**. Monitoring efforts and results for these POCs are presented in the following sections.

Monitoring Program Activity	Status				
Waterbody/Drainageshed Monitoring (Section 4.1)					
Outfall and Receiving Water Monitoring	 3 wet weather events monitored at 3 urban discharge and 3 receiving water sites 				
(Section 4.1.2)	 4 dry weather events monitored at 3 urban discharge and 3 receiving water sites 				
Rainwater/Atmospheric Deposition Monitoring (Section 4.1.3)	 Rainwater monitored at 3 locations during 3 wet weather events 				
Sediment Toxicity and Sediment Chemistry (Section 4.1.4)	 1 wet weather event and 2 dry weather events monitored for sediment toxicity (SC-5R) 				
Water Column Toxicity	 1 wet weather event monitored at the historical monitoring location (SC-1R) 				
(Section 4.1.5)	 1 dry weather event monitored at the historical monitoring location (SC-1R) 				

Table 9. 2018-2019 Monitoring	Program Accomplishments
-------------------------------	-------------------------

4.1.1 Storm Tracking and Selection

Monitoring of stormwater runoff is a key component of the monitoring program⁷ and requires a high level of coordination of equipment and field crews. Incoming storms are tracked and assessed against storm selection criteria (e.g., amount of precipitation, days since last rain event, duration of event) and the forecasted reliability that the storm will occur in the SUA. Wet weather monitoring is particularly challenging in the SUA, as rainfall forecasts are often unreliable due to the convective nature of incoming storms. In addition, because storms normally intersect Stockton traveling from the west to the east, it is not unusual for northern Stockton to receive substantial rainfall, while southern Stockton remains dry, or vice versa.

Wet weather events are timed to attempt to capture urban runoff impacts with the highest possible representation of the targeted storm event (i.e., high percent capture) using flow-based composite samplers at urban discharge stations when possible. Grab sampling techniques, when feasible, are conducted near the peak of storm event hydrographs, and are used at all receiving water stations. Due to standard method requirements, grab sampling is used for the following constituents when monitored:

- Oil and grease,
- Indicator bacteria,
- Mercury/methylmercury, and
- Pesticides.

15

⁷ The Regional Permit defines the "monitoring year" as October 1 – September 30. Monitoring events are reported for the fiscal year, due to the time needed for data reporting and processing.

The daily total rainfall at the Stockton Metropolitan Airport⁸ during the 2018-2019 monitoring year is shown in **Figure 2**. The total cumulative seasonal rainfall (relative to the historical average⁹) and monitoring event timing are also shown. Historical average annual rainfall at the Stockton Metropolitan Airport is 14 inches. The 2018-2019 monitoring year had above-average precipitation with 18.34 inches of rain, which is 131% of historical annual rainfall. Although the 2018-2019 wet season was wetter than average, the California Department of Water Resources classified the 2018 water year (ending September 30, 2018) as "below normal" for the San Joaquin Valley.¹⁰ The 2019 water year classification is not expected to be determined until May 2020.

⁸ <u>https://cdec.water.ca.gov/cgi-progs/queryCSV?station_id=SOC&sensor_num=45&dur_code=D&start_date=7%2F1%2F2016&end_date=6%2F3</u> <u>0%2F2017&data_wish=View+CSV+Data</u>

⁹ Based on 1981-2010 data. <u>http://www.cnrfc.noaa.gov/awipsProducts/RNOWRKCLI.php</u>

¹⁰ <u>http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST</u>

Figure 2. 2018-2019 Precipitation at Stockton Metropolitan Airport and Captured Monitoring Events

This page intentionally left blank for printing purposes

4.1.1.1 Details of 2018-2019 Wet Weather Monitoring Events

Each monitoring event is unique in terms of the antecedent weather conditions, flow in the receiving waterbody, field conditions, etc. Runoff quality is particularly influenced by the amount and intensity of rainfall and time of sampling with respect to the rainfall hydrograph. The conditions for wet weather events conducted during 2018-2019 are summarized in **Table 10**.

	SE68	SE69	SE70
Storm Events ^[a, b]	11/29/18	12/16/18	05/15/19
Time of first rain	11/29/2018 00:30	12/16/2018 16:10	5/15/2019 9:30
Time of last rain	11/29/2019 16:25	12/17/2018 5:25	5/16/2019 2:45
Total rain (in)	0.87	1.13	0.79
Antecedent Conditions			
Date of last precipitation	11/28/2018	12/6/2018	4/16/2019
Date of last storm > 0.1	11/28/2018	12/5/2018	4/16/2019
Days since last storm	<1 Day	11 Days	30 Days
Date of last storm > 0.25	11/24/2018	11/29/2018	4/2/2019
Days since last storm	5 Days	17 Days	44 Days
Cumulative rainfall to date (in)	3.49	4.97	16.72

Table 10. Details of 2018-2019 Wet Weather Monitoring Events

[a] Precipitation data are collected at the Stockton Metropolitan Airport, available at: <u>http://mesowest.utah.edu/cgi-bin/droman/download_ndb.cgi?stn=KSCK&year1=2014&day1=19&month1=6&hour1=&timetype=LOCAL&unit=0</u>

[b] Per the AMP approved by the Regional Water Board, rainfall events of 0.15"- 0.25" are targeted for the monitoring program.

19

4.1.2 Outfall and Receiving Water Monitoring

The monitoring program includes urban discharge outfall and receiving water monitoring. Urban discharge outfall monitoring characterizes the quality of urban runoff discharged from three storm drain outfalls along Smith Canal. In addition, receiving water monitoring characterizes the quality of the receiving waters within the SUA. Three receiving water sites were sampled downstream of the urban discharge sites. The co-located sites are used to help determine if the urban discharge is causing or contributing to contemporaneous in-stream exceedances of applicable water quality objectives.

Monitoring sites sampled in 2018-2019 are shown in Table 8.

- Urban discharge sites are labeled with a station and number code (e.g., SC-1).
- Receiving water sites are labeled with an "R" for receiving water (e.g., SC-1R).

The outfall and receiving water monitoring sites and predominant land uses are summarized in **Table 11.**

Site Type	Station ID	Monitoring Site Description	Predominant Land Use	Drainage Area (acres)
	SC-1	Outfall in Yosemite Lake, representing the upstream portion of Smith Canal	Mixed-use	1,866
Urban Outfall	SC-55 ^[a]	Outfall midway along Smith Canal	Residential	485
	SC-56 ^[b]	Outfall at western end of Smith Canal	Mixed-use	81
	SC-1R	Smith Canal at east side of the Pershing Avenue bridge	Mixed-use	NA
Receiving Water	SC-55R ^[a]	Smith Canal at north side of Shimazu Drive west of the Buena Vista Avenue pump station	Residential	NA
	SC-56R ^[b]	Smith Canal at west side of pedestrian bridge, near Ryde Avenue and Shimazu Drive	Mixed-use	NA

Table 11. 2018-2019 Outfall and Receiving Water Monitoring Sites on Smith Canal

NA = not applicable

[a] Previously named SC-2D (urban outfall) and SC-2R (receiving water).

[b] Previously named SC-3D (urban outfall) and SC-3R (receiving water).

Monitoring is generally conducted during three wet weather events and four dry weather events each year. During 2018-2019, monitoring was completed at each urban discharge and receiving water site three (3) times during the wet season and four (4) times during the dry season. The timeline of the events is shown in **Figure 2** (above). The sites sampled during each event are listed in **Table 12**. Wet weather events (labeled "SE" for storm event) and dry weather events (labeled "DW" for dry weather) are numbered sequentially from the initiation of monitoring wet weather and dry weather events (in 1992 and 2004, respectively).

Site Type	Station ID	DW35 09/24/18	SE68 11/29/18	SE69 12/16/18	DW36 01/30/19	DW37 03/18/19	SE70 05/15/19	DW38 06/19/19
Urban Discharge	SC-1	G	G ^[a]	С	G	G	С	G
	SC-55	G	G	G	G	G	G	G
	SC-56	G	G	G	G	G	G	G
Receiving Water	SC-1R	G	G	G	G	G	G	G
	SC-55R	G	G	G	G	G	G	G
	SC-56R	G	G	G	G	G	G	G

Table 12. Sites Sampled and Type of Sample Collected in 2018-2019

C = Composite

G = Grab

[a] Composite samples were not collected due to equipment issues.

4.1.2.1 Monitored Constituents and Analytical Methods

The constituents and corresponding analytical methods for urban discharge and receiving water monitoring comply with the Method Detection Limits (MDLs) specified in the monitoring program. During the 2018-2019 events, samples at the historical sites (SC-1 and SC-1R) were analyzed for the constituents shown in **Table 13**.¹¹ Samples at all other sampling locations on Smith Canal were analyzed for a targeted set of constituents, based on POCs identified in the June 2012 ROWD, as shown in **Table 8**.

¹¹ Some questions exist as to the applicability of these water quality objectives and criteria to stormwater discharges because an appropriate Water Code section 13241 analysis was not performed on the state water quality objectives used herein and an implementation plan relative to stormwater discharges was not prepared under Water Code section 13242. In addition, the State Water Resources Control Board (SWRCB) has determined that the federal water quality criteria, such as are contained in the CTR, do "not apply to regulation of storm water discharges." *See* SWRCB Policy for Implementation of Toxics Standards for the Inland Surface Waters, Enclosed Bays, and Estuaries of California at pg. 1, fn 1; *see also* CTR Preamble, 65 Fed. Reg. 31682 (5/18/00), which does not identify municipal stormwater discharges at the end of pipe without dilution and mixing being considered. Nevertheless, these objectives and criteria are utilized herein for the purposes of this report.

Constituents	Method Detection Limits (MDLs)	WQO(s)	WQO Source
Conventional Pollutants	mg/L		-
Oil and Grease	5	Narrative ^[a]	Basin Plan ^[b]
рН	0-14	6.5-8.5	Basin Plan
Dissolved Oxygen	Sensitivity to 5 mg/L	>5-6 ^[c]	Basin Plan
Field Measurements			-
Date	mm/dd/yyyy		
Sample Time	hr:min (regular time)		
Weather	degrees F		
Water Temperature	degrees C		
Bacteria	MPN/100 mL		
Fecal coliform	<20	400	Stockton Urban
E. coli	<20	235 ^[d]	Waterbodies Pathogen TMDL (Basin Plan)
General	mg/L		
Turbidity	0.1 NTU		
Total Suspended Solids	2		
Total Dissolved Solids	2	500, 1,000, 1,500	Secondary MCL (Basin Plan)
Total Organic Carbon	1		
Biochemical Oxygen Demand	2		
Chemical Oxygen Demand	20-900		
Total Kjeldahl Nitrogen	0.1		
Alkalinity	2		
Total Ammonia-Nitrogen	0.1		[e]
Specific Conductance	1 μmhos/cm	1,000 900, 1,600, 2,200	Bay-Delta WQ Plan ^[f] Secondary MCL (Basin Plan)
Total Hardness	2		
Metals	µg/L		
Aluminum, Dissolved	50	750	EPA Criteria Guidance ^[g]
Aluminum, Total	50	200	Secondary MCL ^[h] (Basin Plan)
Copper, Dissolved	0.5	Hardness-dependent	CTR ^[i]
Iron, Total	100	300	Secondary MCL (Basin Plan)
Lead, Dissolved	0.5	Hardness-dependent	CTR
Mercury, Total	0.5 ng/L	50 ng/L	CTR
Methylmercury, Total	0.05 ng/L		Basin Plan ^[j]
Zinc, Total	1	Hardness-dependent	CTR
Pesticides	ng/L		
Chlorpyrifos	10	15	Basin Plan
Pyrethroids	5		[k]

 Table 13. Constituent Analysis for Outfall and Receiving Water Monitoring at Historical Sites

[a] The oil and grease narrative WQO states "Waters shall not contain oils, greases, waxes, or other materials in concentrations that cause nuisance, result in a visible film or coating on the surface of the water or on objects in the water, or otherwise

adversely affect beneficial uses." For the purposes of the exceedance assessments, a value of 0 is used as a very conservative comparison.

- [b] Water Quality Control Plan for the Sacramento River and San Joaquin River Basins.
- [c] The WQO is >6 mg/L September 1 November 30.
- [d] Not an objective, but the Stockton Urban Waterbodies Pathogen TMDL single sample maximum water quality target.
- [e] The USEPA WQOs are dependent on pH and temperature; therefore, no standard value can be specified for stormwater events.
- [f] The San Francisco Bay/Sacramento-San Joaquin Delta Estuary contains the WQO for the areas within the Delta Legal Boundary (which may be revised). The Basin Plan contains the WQO for the areas outside of the Delta Legal Boundary.
- [g] United States Environmental Protection Agency Guidance Recommended Ambient Water Quality Criteria.
- [h] United States Environmental Protection Agency Secondary Maximum Contaminant Level.
- [i] 40 C.F.R. Section 138.38(b) California Toxics Rule.
- [j] The methylmercury objective is a tissue-based objective. For the Sacramento-San Joaquin Delta and Yolo Bypass waterways listed in Appendix 43 (including waterways in the Stockton Urbanized Area), the average methylmercury concentrations shall not exceed 0.08 and 0.24 mg methylmercury/kg, wet weight, in muscle tissue of trophic level 3 and 4 fish, respectively (150-500 mm total length). The average methylmercury concentrations shall not exceed 0.03 mg methylmercury/kg, wet weight, in whole fish less than 50 mm in length.
- [k] The Central Valley Pyrethroid Pesticide Basin Plan Amendment (BPA) was approved by the USEPA Office of Administrative Law on February 19, 2019 and became effective during the 2018-2019 monitoring year. The BPA establishes pyrethroid concentration goals and pyrethroid triggers based on the sum of freely dissolved individual pyrethroid concentrations divided by their concentration goals. Pyrethroid concentrations in future monitoring years will be evaluated using the Basin Plan pyrethroid triggers.

The Region-wide Permit requires the submittal of water quality monitoring data to the Regional Water Board. As such, all water quality monitoring data are submitted in **Appendix B**. The Region-wide Permit also requires that the water quality monitoring data be uploaded to the California Environmental Data Exchange Network (CEDEN) or the Storm Water Multi-Application Reporting and Tracking System (SMARTS) database, when available. Notably, both databases are not currently available to accept the formatted data, which requires Regional Water Board coordination with the Surface Water Ambient Monitoring Program (SWAMP) at the State Water Resources Control Board. When these databases are capable of receiving the water quality monitoring data, the receiving water and urban discharge data would be uploaded to the SMARTS database, but only the receiving water data would be uploaded to CEDEN.

In order to prepare the data, the Permittees have been working with the three analytical laboratories (Fruit Growers Laboratory, Caltest, and Pacific EcoRisk) as well as Regional Water Board staff to format the data to be compatible with the requirements for the electronic upload. Due to time needed to coordinate with the analytical laboratories, the water quality monitoring data from 2016-2017 and 2017-2018 along with the data from 2018-2019 are anticipated to be submitted to the Regional Water Board in CEDEN-compatible format, and uploaded to CEDEN, by the end of 2019.

The waterbody/drainageshed monitoring results include the following information:

- Sample location
- Station type (urban discharge [UD] or receiving water [RW])
- Sampling method (composite or grab)
- Sample date and time
- Sample result
- MDLs
- Reporting Limits (RLs)

- Data qualifiers
- Comparison to the lowest applicable water quality objective (WQO)
- The name of the analyzing laboratory

For analyses that were non-detect (ND), the value is reported as less than the MDL, where the MDL is provided by the lab; otherwise, the value is reported as less than the RL.

Monitoring results for the constituents identified as water quality POCs for Smith Canal are presented graphically to provide an overview of the characterization of Smith Canal:

- Dissolved oxygen (Figure 3);
- *E. coli* and fecal coliform (**Figure 4**);
- Methylmercury and total mercury (**Figure 5**); and
- Chlorpyrifos (Figure 6) and pyrethroids (Figure 7)

Data for the POCs and PWQCs are summarized in tables in **Appendix C**. A complete assessment of monitoring results from Smith Canal within the context of all monitored waterbodies, including data from the historical monitoring locations and an assessment of trends, will be provided in the End-Term Report (for Fiscal Year 2020-2021). For the purposes of this report, general observations are provided below:

- Dissolved oxygen (DO):
 - With a few exceptions, the DO WQOs were met.
 - DO concentrations were below the minimum WQO during the first and last dry weather events, DW35 and DW38, at discharge locations SC-55 and SC-56.
 - All receiving water concentrations were above the minimum WQO.
 - All concentrations measured during wet weather were above the minimum WQO.
- *E. coli* are a more appropriate indicator than fecal coliform to evaluate risk to human health, as noted in the 2012 United States Environmental Protection Agency Recreational Water Quality Criteria,¹² and the State Water Board's 2018 Bacteria Provisions.¹³
 - Frequent *E. coli* exceedances occurred at discharge and receiving water sites, primarily during storm events.
 - As is typical, indicator bacteria concentrations were generally higher during storm events than during dry weather events.
- Methylmercury concentrations remained at or below 1 ng/L at all sites, and below 0.1 ng/L at the receiving water sites SC-1R and SC-56R.

¹² United States Environmental Protection Agency. 2012. Recreational Water Quality Criteria. Office of Water, 820-F-12-058.

 $^{^{13}} https://www.waterboards.ca.gov/bacterialobjectives/docs/bdmtg_aug7_bacteria_2nd_iswebe_bacteria_provisions_2nd_rev_proposed.pdf$

- Chlorpyrifos concentrations were below the WQO in all discharge and receiving water samples. Most results were non-detect.
- Pyrethroids¹⁴:
 - Pyrethroids were rarely detected in the receiving water monitoring location SC-56R.
 - A higher number of individual pyrethroid compounds, and higher concentrations of pyrethroids, were detected in discharge samples than receiving water samples.
 - Samples at discharge site SC-55 had the greatest number of individual pyrethroids and most consistent detections.
 - Bifenthrin was detected most frequently and at the highest concentrations. Discharge site SC-1 had the highest concentrations of bifenthrin.

¹⁴ The BPA became effective during the 2018-2019 monitoring year. The measurements of total and dissolved organic carbon, necessary for estimating the dissolved concentration of pyrethroids, were not part of the 2018-2019 monitoring program but will be added for pyrethroid characterization monitoring in future years.

This page intentionally left blank for printing purposes

Figure 3. Smith Canal 2018-2019 Dissolved Oxygen Concentrations (mg/L)

Figure 4. Smith Canal 2018-2019 E. coli and Fecal Coliform Concentrations (MPN/100 mL)

Figure 5. Smith Canal 2018-2019 Methylmercury and Total Mercury Concentrations (ng/L)

Figure 6. Smith Canal 2018-2019 Chlorpyrifos Concentrations (ng/L)

Figure 7. Smith Canal 2018-2019 Pyrethroid Concentrations (ng/L)

This page intentionally left blank for printing purposes

4.1.3 Rainwater/Atmospheric Deposition Monitoring

During 2018-2019, rainwater/atmospheric deposition was monitored for dissolved oxygen, methylmercury, total mercury, and pesticides (chlorpyrifos and pyrethroids) at three representative locations in the SUA. These three locations are shown in **Figure 8**.

Figure 8. Rainwater/Atmospheric Deposition Monitoring Locations

The monitoring sites include the following:

- NW-Rain Located along Mosher Slough in the northwest corner of the SUA. This site has been historically monitored for the Pesticide Plan and is representative of atmospheric deposition generated within and outside of the SUA.
- NE-Rain Located along Mosher Slough outside of the SUA, to the northeast. This site has been historically monitored for the Pesticide Plan and is representative of atmospheric deposition generated outside of the SUA.
- SC-Rain Located at the Legion Park Pump Station, in the center of the SUA. This site is representative of atmospheric deposition generated within the SUA.

During 2018-2019, rainwater was monitored at all three sites during all three storm events sampled for outfall and receiving water monitoring. Rainwater monitoring results are shown in **Figure 9**.

Figure 9. 2018-2019 Rainwater/Atmospheric Deposition Monitoring Results

City of Stockton and County of San Joaquin

This page intentionally left blank for printing purposes

City of Stockton and County of San Joaquin

General observations are summarized below:

- Dissolved oxygen remained well above the minimum WQO in all rainwater samples.
- Methylmercury and total mercury:
 - Methylmercury concentrations in rainwater were similar at all three locations; methylmercury concentrations were also similar in magnitude to those observed in urban runoff and receiving water samples.
 - Total mercury was detected at lower concentrations in rainwater than in urban runoff or receiving water samples, at concentrations below the WQO.
- Pesticides:
 - Chlorpyrifos was detected in rainwater in all but one sample, and at a concentration above the WQO during the first storm event in the NE rainwater location.
 - Pyrethroids were detected with similar frequencies and at similar concentrations at all three rainwater locations. Pyrethroid levels were highest during the final storm event, which occurred later in the season than is typical (May 16).

4.1.4 Sediment Toxicity and Sediment Chemistry

The monitoring program specifies that sediment toxicity be monitored for receiving water sites on each historical waterbody. Monitoring is performed 2-4 days following one storm event and during two dry weather events. Sediment samples are analyzed using the USEPA standardized ten-day sediment toxicity testing method¹⁵ for freshwaters using *Hyalella azteca*, and sediment total organic carbon (TOC) and grain size are reported. If toxicity is determined to be statistically significant, and a greater than or equal to 50% increase in *Hyalella azteca* mortality¹⁶ is observed, follow-up testing of sediment chemistry is performed for the parameters specified in **Table 14**.

¹⁵ USEPA 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. Office of Research and Development. Washington, DC.

¹⁶ City of Stockton and County of San Joaquin. Sediment Toxicity Work Plan. March 27, 2009, revised June 2009.

Pesticides in Sediment ^[a]	Target Reporting Limit
Organophosphate Pesticides	µg/kg
Chlorpyrifos	0.01
Diazinon	0.05
Pyrethroid Pesticides ^[b]	ng/g
Bifenthrin	1
Cyfluthrin-1	3
Cyfluthrin-2	3
Cyfluthrin-3	3
Cyfluthrin-4	3
Cypermethrin-1	3
Cypermethrin-2	3
Cypermethrin-3	3
Cypermethrin-4	3
Deltamethrin	2
Esfenvalerate/Fenvalerate-1	2
Esfenvalerate/Fenvalerate-2	1
Lambda-cyhalothrin-1	1
Lambda-cyhalothrin-2	4
Permethrin	4

Table 14. Sediment Chemistry Constituents to be Monitored

[a] Follow-up testing of sediment chemistry will be performed if toxicity is determined to be statistically significant and a greater than or equal to 50% increase in *Hyalella azteca* mortality is observed.

[b] Pyrethroid isomers are typically reported as totals instead of the individual isomers, except where individual isomers may be obtained.

During 2018-2019, sediment monitoring was completed at SC-5R during three events:

- Four days after SE68 rain event terminated, 12/03/18
- DW35, 09/24/18
- One day after DW38, 06/20/19

Sediment toxicity results are summarized in Table 15 and included in Appendix D.

Samples from all events showed significant reductions in *H. azteca* survival; however, follow-up testing of sediment chemistry was only triggered by dry weather event DW38, as the reduction in mortality was greater than 50%. The sediment chemistry testing results from event DW38 are summarized below:

• The sample showed significant toxicity likely attributable to pesticides (pyrethroids). Survival of *Hyalella azteca (H. azteca)* at location SC-5R was 27.5%, a reduction relative to the control of 70.0%. This reduction in survival triggered follow-up analysis of pyrethroids in sediment. Sediment chemistry results are shown in **Table 16**. Multiple pyrethroids were detected, with bifenthrin present at the highest concentration. Pyrethroid concentrations were consistently lower in the field duplicate.

		Toxicity Relative to L	Present .ab Control?		Reduction	
Sample ID	Date	H. azteca Survival	H. azteca Growth	Mean % Survival	in Survival (%)	Mean Growth (mg)
SE68						
Control	-	-	-	100	-	0.080
SC-5R	12/03/18	Yes	No	63.8	36.2	0.105
SC-5R FD	12/03/18	Yes	Yes	82.5	17.5	0.042
DW35						
Control	-	-	-	100	-	0.094
SC-5R	09/24/18	Yes	Yes	92.5	7.5	0.063
SC-5R FD	09/24/18	Yes	Yes	92.5	7.5	0.052
DW38	DW38					
Control	-	-	-	97.5	-	0.054
SC-5R	06/20/19	Yes	No	27.5	70.0	0.122
SC-5R FD	06/20/19	Yes	No	26.2	71.3	0.208

Table 15. 2018-2019 Sediment Toxicity Results at Smith Canal

FD = Field Duplicate

Bold indicates that toxicity observed was statistically significant.

	Result (ng/g)		
Sample ID	SC-5R	SC-5R FD	
Organophosphate Pesticides	•	•	
Chlorpyrifos	ND	ND	
Diazinon	23	22	
Pyrethroid Pesticides			
Allethrin	ND	ND	
Bifenthrin	120	110	
Cyfluthrin	12	10 J	
Cypermethrin	8.0 J	6.7 J	
Deltamethrin:Tralomethrin	28	26	
Esfenvalerate:Fenvalerate	ND	ND	
Fenpropathrin	ND	ND	
Lambda-Cyhalothrin	7.7 J	6.9 J	
Permethrin	88	73	
Tau-Fluvalinate	12	7.8 J	
Tetramethrin	ND	ND	

Table 16. Follow-Up Sediment Chemistry Results for Event DW38 at Smith Canal

FD = Field Duplicate

 J = Concentration is between the MDL and the RL and is therefore an estimated value.

ND = Not Detected

4.1.5 Water Column Toxicity Monitoring

The monitoring program specifies that water column toxicity be monitored during one storm event and one dry weather event when the historical monitoring location is sampled (i.e., SC-1R). Water column toxicity is conducted in accordance with USEPA methods¹⁷ using short-term chronic toxicity tests based on two freshwater species: 1) Three-brood (6-8 day) survival and reproduction test with water fleas (the invertebrate *Ceriodaphnia dubia*); and 2) Seven-day survival and growth test with larval fathead minnows (*Pimephales promelas*). If 100% mortality of either species is detected in a receiving water sample within 24 hours of test initiation, dilution series testing (from 6.25% to 100% receiving water) is initiated to determine if toxicity was persistent. If statistically significant toxicity is detected, and a greater than or equal to 50% increase in fathead minnow or *Ceriodaphnia dubia* mortality or reduction in *Ceriodaphnia dubia* mortality compared to the laboratory control is observed, a Toxicity Identification Evaluation (TIE) is conducted.

During 2018-2019, water column toxicity was monitored at site SC-1R during one storm event and one dry weather event:

- SE68, 11/29/18
- DW38, 06/19/19

During SE68, no significant reductions in *Ceriodaphnia dubia* survival or reproduction were observed. During DW38, there was a significant reduction in *Ceriodaphnia dubia* reproduction. No significant reductions in fathead minnow survival or growth occurred in any of the water samples. The water column toxicity results are included in **Appendix E**.

4.2 DATA QUALITY EVALUATION

Quality Assurance/Quality Control (QA/QC) refers to the process of reviewing lab and "field" initiated checks on the sampling and analytical process. These checks, which include field blanks, method blanks, field duplicates, lab duplicates, and matrix spike/matrix spike duplicates (MS/MSD), and data review are used to confirm that data are of high quality. Lab reports are initially screened by the field monitoring contractor for missing analytical data (both environmental and QA/QC), holding time exceedances, discrepancies in analytical methods or detection limits, and any apparent out-of-range environmental results. If the analytical work appears to be missing any requested analyses, the lab is asked to complete the missing analyses, if it is possible to do so within the specified holding time. Periodically, data analyses are requested even if samples exceed the specified hold time. Data qualifiers are appended to the environmental data points where appropriate by applying the data quality objectives provided by the laboratories. The QA/QC process allows for the identification of isolated incidents of out-of-range lab and sampling performance, but, more importantly, the process allows for the identification of potential long-term trends in lab and sampling performance. An important and ongoing component of the QA/QC program is to report and correct any identified problems.

¹⁷ USEPA 2002. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to freshwater organisms, 4th Edition. EPA-821-R-02-013. Office of Water. Washington, DC.

Overall, no significant problems with data quality were identified during 2018-2019. Isolated instances of constituents detected in field blanks, field duplicates not meeting relative percent difference standards (RPD), and lab QA/QC issues occurred. However, when conducting such a large monitoring and reporting program, field, lab, and/or analytical issues occasionally arise. In general, the data collected and reported are considered of high quality and suitable for data analysis with the qualifications noted in the **Appendix B** data report. The main qualifiers used are summarized in **Table 17**.

Qualifier	Definition of Qualifier	Q	ualifier Description/Applicability, 2018- 2019
FB	The concentration of a given constituent was detected in the field blank. The associated environmental sample taken at the same site is considered an estimate.	•	A field blank was taken at one site for all constituents during each monitoring event. If no constituents were detected in field blank samples, the FB qualifier was not used.
FD	The Relative Percent Difference (RPD) between the concentrations of a given constituent in the field duplicate and the associated environmental sample was outside the acceptable limit. This indicates that the duplicability and precision of the results for this constituent may be low.	•	A field duplicate was taken at one site for all constituents during each monitoring event. All RPDs were within acceptable limits, so the FD qualifier was not used.
J	The concentration of a given constituents is between the MDL and the RL and is, therefore, an estimated value. The J qualifier does not indicate poor data quality because all the RLs used met permit requirements.	•	The J-flag qualifier is common in all data in the monitoring program and was frequently applied.
ND	A given constituent was not detected and is recorded as < MDL. The ND qualifier does not indicate poor data quality, but rather indicates that a constituent was simply not detected.	•	The ND qualifier is common in all data in the monitoring program and was frequently applied.

4.3 DELTA REGIONAL MONITORING PROGRAM

The Delta RMP is a stakeholder-directed project formed to develop a regional water quality monitoring program designed to improve understanding of water quality issues in the Sacramento-San Joaquin Delta. The goal of the Delta RMP is to better coordinate and design current and future monitoring activities in and around the Delta to create a cost effective approach for providing critically needed water quality information to better inform policy and regulatory decisions of the Regional Water Board and other Federal, State and local agencies and organizations.¹⁸ The Delta RMP focused the initial monitoring efforts on mercury, pesticides, nutrients, and pathogens. The City and County are contributing members of the Delta RMP, which commenced monitoring in 2015. As the data are collected and results reported, the City and County will reference this data within the annual reports and mid-term and end-term reports, as needed.

¹⁸<u>http://www.waterboards.ca.gov/centralvalley/water_issues/delta_water_quality/delta_regional_monitoring/index.s</u>
<u>html</u>

4.4 TOTAL MAXIMUM DAILY LOADS

The Region-wide Permit requires the City and County to continue implementation of the stormwater monitoring program, which includes implementation actions and assessments related to applicable TMDLs. Efforts to fulfill TMDL monitoring requirements (included in Attachment G of the Region-wide Permit) are summarized in the following sections.

4.4.1 Sacramento-San Joaquin Delta Diazinon and Chlorpyrifos TMDL (Resolution R5-2006-0061)

The organophosphate (OP) Pesticide TMDL establishes wasteload allocations (WLAs) for the sum of diazinon and chlorpyrifos concentrations relative to their respective WQOs. Attachment G of the Region-wide Permit requires that, within one year of the receipt of the NOA under the Region-wide Permit, the City and County (as Permittees) must submit an assessment to determine the diazinon and chlorpyrifos levels and attainment of WLAs in urban discharge and WQOs in the receiving water. The Permittees performed this assessment during 2016-2017 and submitted the information with the Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area.¹⁹ The assessment indicated that, with the exception of Duck Creek, the targets and allocations for the TMDL are largely being met. In addition, Calaveras River, Mosher Slough, and Smith Canal all meet the 303(d) delisting criteria.

4.4.2 Central Valley Pesticide TMDLs

4.4.2.1 Central Valley Diazinon and Chlorpyrifos TMDL (Resolution No. R5-2014-0041)

The Regional Water Board adopted the Diazinon and Chlorpyrifos TMDL on March 28, 2014. This TMDL was approved by the State Water Resources Control Board on June 16, 2015, and by the USEPA on August 16, 2017, at which time the TMDL became fully effective under state and federal law. The Diazinon and Chlorpyrifos TMDL includes WQOs for diazinon and chlorpyrifos based on the California Department of Fish and Game criteria, which are the existing Basin Plan WQOs applicable to the SUA. The TMDL does not change the existing WLAs for point source dischargers.

4.4.2.2 Central Valley Pyrethroid Pesticides Basin Plan Amendment and TMDL (Resolution R5-2017-0057)

The Central Valley Pyrethroid Pesticides Basin Plan Amendment (BPA) and TMDL were adopted by the Regional Water Board on June 8, 2017. The BPA was approved by the USEPA and the Office of Administrative Law (OAL) on February 19, 2019, upon which date the BPA became legally effective. The TMDLs included in the BPA for nine urban creeks in Sacramento and Roseville became legally effective on April 22, 2019. The BPA establishes pyrethroid concentration goals and an implementation program to control pyrethroids in the Sacramento and

¹⁹ City of Stockton and County of San Joaquin. Assessment and Prioritization of Water Quality Constituents in the Stockton Urbanized Area. Prepared by Larry Walker Associates. May 30, 2017.

San Joaquin River watersheds and establishes TMDLs for waterbodies that are 303(d) listed for pyrethroids.

The BPA includes requirements for pyrethroid monitoring, a conditional prohibition, and a pyrethroid management plan. These requirements were not yet applicable during 2018-2019 but will be incorporated into the Permittees' upcoming SWMP.

4.4.3 Stockton Urban Water Bodies Pathogen TMDL (Resolution No. R5-2009-0030)

The Pathogen TMDL includes WLAs for fecal coliform and *E. coli*. The Permittees are required to continue monitoring and implementation activities consistent with the Stockton Urban Waterbodies Pathogen Control Program, and to document, in Mid-Term and End-Term Reports under the Region-wide Permit, the implementation of BMPs to control the discharge of pathogens (indicator bacteria) in their urban discharge, as well as submit effectiveness assessments of implemented BMPs. During 2018-2019, the Permittees monitored for indicator bacteria at Smith Canal, as described in **Section 4.1.2**. Implementation of BMPs is documented in **Section 5**.

4.4.4 Delta Methylmercury TMDL (Resolution No. R5-2010-0043)

As a part of Phase I of the Sacramento-San Joaquin Delta Methylmercury TMDL,²⁰ the City and the County must conduct a Methylmercury Control Study (Control Study) and participate in the Mercury Exposure Reduction Program (MERP). Progress for the Control Study and MERP participation are reported in the following sections.

4.4.4.1 Methylmercury Control Study

The Permittees submitted a Control Study Workplan to the Regional Water Board on April 22, 2013 and received feedback from the technical advisory committee and Regional Water Board staff during August 2013. The Permittees submitted a revised Control Study Workplan in October 2013 to address the comments received.

The Control Study focuses on evaluating the mercury and methylmercury removal performance of the Airport Business Center detention basin within the SUA, along with examining the potential for methylmercury production in the basin. The Permittees implemented the Control Study according to the schedule in **Table 18**.

²⁰ Central Valley Regional Water Quality Control Board. 2012. Amendments to the Water Quality Control Plan for the Sacramento River and San Joaquin River Basins for the Control of Methylmercury and Total Mercury in the Sacramento-San Joaquin River Delta Estuary. Rancho Cordova, CA. Available online: www.waterboards.ca.gov/rwqcb5/water_issues/tmdl/central_valley_projects/delta_hg/2011oct20/bpa_20oct2011_fi nal.pdf

Table 18. Methylmercury Control Study Schedule

Task	Estimated Completion	Completed
Submit Control Study Work Plan to Regional Water Board	April 19, 2013	\checkmark
Regional Water Board and TAC Work Plan Review	May-July 2013	\checkmark
Finalize Work Plan	October 21, 2013	\checkmark
Initiate Control Study Sampling First Year Monitoring Second Year Monitoring Third Year Monitoring Submit Control Study Progress Report	October 2013 • Oct 2013 – Sep 2014 • Oct 2014 – Sep 2015 • Oct 2015 – Sep 2016 October 2015	✓ ✓
Complete Control Study Sampling	September 2016	✓ ✓
Submit Annual Progress Report	of Annual Report)	V
Submit Annual Progress Report	October 2018 (submitted as part of Annual Report)	\checkmark
Submit Control Study Final Report to Regional Water Board	October 20, 2018	\checkmark

The Control Study included monitoring for mercury and methylmercury using grab samples, along with ancillary constituents (i.e., suspended sediment, total suspended solids, total dissolved solids, turbidity, phosphorus, sulfate, and iron) using composite samples, and field readings. Samples were collected at the detention basin inlets and outlet. During dry weather events, sediment samples were collected for mercury and methylmercury. Sampling occurred during three wet weather events and one dry weather event for three years.

Monitoring was completed during 2015-2016. The Control Study Progress Report was submitted in October 2015. An annual progress report, per TMDL requirements, was submitted in October 2016 and 2017. The final report was submitted by October 20, 2018.

4.4.4.2 Delta Mercury Exposure Reduction Program Participation

The Delta Mercury Control Program requires the entities identified in the Basin Plan to develop and implement a Mercury Exposure Reduction Program (MERP). The Delta MERP participants include those entities and agencies that formally submitted a letter describing their intent to participate in the collective exposure reduction program. The Permittees submitted their letter during 2013-2014 and are currently participating in the Delta MERP.

The Delta MERP is designed to increase understanding of contaminants in fish and reduce exposure to mercury among people who eat fish from the Delta. The Delta MERP is producing educational materials based on fish consumption guidelines, and is also focusing on presenting a balanced message, including communicating the health risks associated with exposure to mercury in fish, ways to reduce exposure, and health benefits of eating fish generally, as well as identifying low-mercury fish species and areas. The Delta MERP is also focusing efforts on training opportunities for entities involved in the Delta MERP, including county agencies, tribal organizations, community-based organizations, and health care providers. During 2018-2019, the Permittees contributed funding to the MERP and have been actively tracking its progress.

4.4.5 Lower San Joaquin River, Stockton Deep Water Ship Channel Organic Enrichment and Low Dissolved Oxygen TMDL (Resolution No. R5-2005-0005)

The Organic Enrichment and Low Dissolved Oxygen TMDL requires that responsible parties implement BMPs to control and abate the discharge of oxygen-demanding substances. Attachment G of the Region-wide Permit requires covered Permittees to continue implementation of BMPs identified in their SWMP to control oxygen-demanding substances in their stormwater discharges. These implementation efforts are documented in this Mid-Term Report and will be documented in the End-Term Report, as required under the Region-wide Permit. During 2018-2019, the Permittees monitored for dissolved oxygen at Smith Canal using grab samples, as described in **Section 4.1.2**. Implementation of BMPs is documented in **Section 5**.

4.4.6 Trash Implementation

The State Water Resources Control Board adopted the Trash Amendments²¹ on April 7, 2015. The Trash Amendments require MS4 permittees to comply with the prohibition of trash discharge through Track 1 or Track 2.

The Regional Water Board issued a 13383 Order on June 1, 2017 requiring the City to submit a letter identifying the selected compliance option (Track 1 or Track 2) by September 1, 2017. The City selected the Track 2 compliance method (full capture system equivalency).

The County's jurisdiction includes both Phase I and Phase II areas. As such, it is subject to two separate stormwater permits: the Region-wide Permit and the Phase II Small Municipal Separate Storm Sewer System (MS4) General Permit²² (Phase II Permit) issued by the State Water Board. The County received the 13383 Order issued by the Regional Board (June 1, 2017), as well as a 13383 Order issued by the State Water Board (June 1, 2017). The County responded to both orders with selection of the Track 2 approach to compliance and submitted the preliminary jurisdictional maps required for Phase II areas.

The City and County each submitted Trash Implementation Plans^{23,24} to the Regional Water Board on December 1, 2018, which include the following:

- a) A description of the combination of controls selected by the City and the rationale for the selection;
- b) The rationale for how the combination of controls is designed to achieve Full Capture System Equivalency (FCSE); and

²¹ Proposed Final Part 1 Trash Provisions of the Water Quality Control Plan for Inland Surface Waters, Enclosed Bays, and Estuaries of California (ISWEBE Plan).

²² Order No. 2013-001-DWQ, effective July 1, 2013

²³ City of Stockton, 2018. Statewide Trash Amendments: Track 2 Implementation Plan. December.

²⁴ County of San Joaquin, 2018. Statewide Trash Amendments: Track 2 Implementation Plan. December.

c) The rationale for how FCSE will be demonstrated.

As part of the trash monitoring programs, the City and County will collect quantitative data from the implementation of applicable control measures and report the results in future annual reports.

This page intentionally left blank for printing purposes

5 Program Implementation

This section provides a summary of the status of the implementation of the overall stormwater program during the first three years of the Region-wide Permit term (2016-2017, 2017-2018, and 2018-2019).

As described in **Section 2** and **Section 7**, the City and County submitted a NOI Work Plan as part of their NOI application package (**Appendix A**). During 2016-2019, the City and County implemented the activities as outlined in the NOI Work Plan.

In addition, throughout each reporting period, the City and County track the data and information necessary to conduct short-term and long-term program effectiveness assessments. The short-term program effectiveness assessment is included in **Section 6** of this 2016-2019 Mid-Term Report. The long-term program effectiveness assessment will be completed as part of the End-Term Report in 2021.

Although the current SWMP will be revised, in part, to focus on the identified PWQCs, the midterm report proactively assesses the control measures and activities as applicable to the PWQCs.

A description of the programmatic activities and summary of data collected during 2016-2017, 2017-2018, and 2018-2019²⁵ is presented by Program Element in the following subsections:

- Section 5.1 City Program Implementation
 - Section 5.1.1 Illicit Discharges (ID)
 - Section 5.1.2 Public Outreach (PO)
 - Section 5.1.3 Municipal Operations (MO)
 - Section 5.1.4 Industrial and Commercial (IC)
 - Section 5.1.5 Construction (CO)
 - Section 5.1.6 Planning and Land Development (LD)
- Section 5.2 County Program Implementation
 - Section 5.2.1 Illicit Discharges (ID)
 - Section 5.2.2 Public Outreach (PO)
 - Section 5.2.3 Municipal Operations (MO)
 - Section 5.2.4 Industrial and Commercial (IC)
 - Section 5.2.5 Construction (CO)
 - Section 5.2.6 Planning and Land Development (LD)

The City and County have developed and are implementing Control Measures and accompanying performance standards specific to each Program Element. The programmatic activities and data for the specific tasks initiated and/or completed during the reporting period

²⁵ Throughout **Section 5**, the fiscal years 2016-2017, 2017-2018, and 2018-2019 (collectively July 1, 2016 through June 30, 2019) are represented by the time frame 2016-2019.

pursuant to each Program Element, and specifically related to the PWQCs, are summarized in Section 5. Thus, some Control Measures within each Program Element are not specifically reported on in Section 5 and Section 6. This is indicated in the tables at the beginning of each Program Element sub-section within Section 5 (see City Table 19, Table 27, Table 31, Table 41, Table 48, and Table 54 and County Table 60, Table 67, Table 71, Table 79, Table 84, and Table 86).

As a part of the revision to the SWMP, the range of Control Measures and activities will be assessed to determine which of them are most effective for each of the PWQCs.
5.1 CITY PROGRAM IMPLEMENTATION

5.1.1 Illicit Discharges (ID)

An illicit discharge is defined as any discharge to the storm drain system that is prohibited under local, state, or federal statutes, ordinances, codes, or regulations. Illicit discharges include the disposal of materials, such as paint, spa water, swimming pool water, or waste oil, into the storm drain or the discharge of waste streams containing pollutants to the storm drain. Illegal connections are a subset of illicit discharges. Illegal connections are defined as undocumented and/or unpermitted physical connections from any facility to the storm drain system or receiving water (e.g., a sanitary sewer connection to the storm drain).

Because illicit discharges and illegal connections can be a significant source of pollutants to the storm drain system and receiving waters, the purpose of this Program Element is to ensure implementation of a comprehensive program for detecting, responding to, investigating, and eliminating these types of discharges and connections in an efficient and effective manner.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.²⁶ The Illicit Discharges Program Control Measures are summarized in **Table 19**.

ID	Control Measure	Section 5
ID1	Detection of Illicit Discharges and Illegal Connections	\checkmark
ID2	Illegal Connection Identification and Elimination	\checkmark
ID3	Investigation/Inspection and Follow Up	\checkmark
ID4	Enforcement	\checkmark
ID5	Training	\checkmark
ID6	Effectiveness Assessment	

Table 19. Illicit Discharge Program Control Measures (City)

All PWQCs are addressed by the Illicit Discharge Program Element since illicit discharges and illegal connections could be a source of any of the PWQCs. The City performs the following actions to address this Program Element:

- Proactively detect illicit discharges (IDs) and illegal connections (ICs) through public reporting and field crew inspections;
- Maintain and advertise the 24-hour Hotlines to encourage the public to report water pollution problems;

²⁶ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

- Train staff to recognize illegal discharges so that, during their normal maintenance activities, they can identify signs of previous, current, or potential non-stormwater discharges/connections or illegal dumping into the storm drain system;
- Investigate and eliminate illegal connections;
- Coordinate with the Planning and Land Development and Construction Programs to ensure that potential ICs are identified during project planning and construction phases.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.1.1 Detection of Illicit Discharges and Illegal Connections (ID1)

Illicit discharges were detected through public reporting and field crew inspections. The number of discharges observed or complaints received and the number of illicit discharges verified in 2016-2019 by the City are shown in **Table 20**.

	Number		
Source	2016-2017	2017-2018	2018-2019
Illicit Discharges Observed or W	ater Pollution Co	mplaints Receive	d
Hotline	8	9	4
Ask Stockton	2	14	6
Field Staff	110	34	40
Other	21	0	0
Total	141	57	50
Number of Illicit Discharges Ver	ified ^[a]		
Hotline	7	9	2
Ask Stockton	1	14	2
Field Staff	98	31	37
Other	12	0	0
Total	118	54	41

Table 20. Detection of Illicit Discharges (City)

[a] The number verified is the number with evidence of discharge that is not exempt or in compliance.

5.1.1.2 Illegal Connection Identification and Elimination (ID2)

Illegal connections identified through public reporting, plan reviews, and field crew inspections (including construction inspections) between 2016-2019 by the City are shown in **Table 21**.

Table 21. Illegal Connections Identification (City)

	Number of Illegal Connections		
Source	2016-2017	2017-2018	2018-2019
Hotline/Ask Stockton/ Field Staff	0	2	1
Plan Review	0	0	0
Construction Inspections	0	0	0

5.1.1.3 Investigation/Inspection and Follow Up (ID3)

The total number of illicit discharges and illegal connections reported, illicit discharges verified and cleaned, and illegal connections eliminated in 2016-2019 by the City are shown in **Table 22**.

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Illicit Discharges Reported	141	57	50
Illicit Discharges Verified	118	54	41
Illicit Discharges Requiring Clean-up ^[a]	105	31	28
Illegal Connections Reported	0	2	1
Illegal Connections Eliminated	0	2	1

Table 22. Total Number of Illicit Discharges and Illegal Connections (City)

[a] Including clean-up by a contractor, resident, commercial business or industry, or field crew.

The types of materials involved in the City's verified incidents were tracked, as shown in **Table 23**.

	Number of Incidents			
Materials	2016-2017	2017-2018	2018-2019	
Pesticides	0	2	0	
Sediment	12	0	2	
Hydrocarbons	20	19	13	
Wastewater	52	9	9	
Trash and Debris	27	0	9	
Paint	1	0	4	
Miscellaneous	4	1	7	
Unidentified	2	0	7	
Total	118	31 ^[a]	51 ^[a]	

 Table 23. Materials in Verified Incidents (City)

[a] Multiple types of materials were reported during some illicit discharge inspections, while the material type was not reported during others. Therefore, the number of incidents with materials reported does not equal the verified number of illicit discharges.

5.1.1.4 Enforcement (ID4)

The Enforcement Control Measure establishes policies and procedures and outlines the progressive levels of enforcement applied to responsible parties not complying with City ordinances. By adopting and implementing a progressive enforcement policy, the City ensures that the program is effective at reducing illicit discharges and illegal connections. The City tracked enforcement actions in the Illicit Discharges Database.

The number and types of enforcement actions taken by the City during 2016-2019 are summarized in **Table 24**.

	Number of Actions ^[a]		
Type of Enforcement Action	2016-2017	2017-2018	2018-2019
Verbal Warning	96	0	1
Administrative			
Violation Warning Notice	22	1	4
Notice of Violation	52 Correction Orders ^[b] 64 Notice to Clean	2	20
Cease and Desist Order	1	1	3
Stop Work Order	3	0	0
Administrative Citation (Fine)	5	1	0
Criminal Enforcement ^[c]			
Misdemeanor	0	0	0
Infraction	0	0	0
Total	243	5	28

Table 24. Illicit Discharge Program Enforcement Actions Taken (City)

[a] The total number of enforcement actions taken may be smaller than the number of verified incidents due to enforcement actions issued to the owners of multiple properties.

[b] In 2016-2017, the Notice of Violation form used by the City included the following enforcement options: Cease and Desist Order; Violation Warning Notice; Notice to Clean; Stop Work Order; Fine; and Correction Order.

[c] This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this category can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

The number of repeat offenders identified and referrals made to other agencies by the City during 2016-2019 are summarized in **Table 25**.

Table 25. Illicit Discharge Program Repeat Offenders (City)

	Number of Incidents		
Metric	2016-2017	2017-2018	2018-2019
Repeat offenders	16	0	1
Referred to Regional Water Board	0	0	2

5.1.1.5 Training (ID5)

The trainings associated with the Illicit Discharge Program Element attended by City staff between 2016-2019 are summarized in **Table 26**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
7/13/2016	Universal Waste	29	NT	NT
9/21/2016	Hydro/vac truck Safety	36	NT	NT
10/26/2016	Storm Patrol	32	NT	NT
11/30/2016	Smart Cover	36	NT	NT
1/10/2017	Storm Patrol	3	NT	NT
11/07/2018	IDDE-A Grate Concern	58	Various	PW/MUD
12/14/2018	IDDE-A Grate Concern	8	Inspectors	CDD

Table 26. Illicit Discharge Program Trainings Attended (City)

NT: Not Tracked

5.1.2 Public Outreach (PO)

The purpose of the Public Outreach Program Element is to inform the public (increase knowledge) regarding the impacts of urban stormwater runoff and introduce steps the public can take (change behavior) to reduce pollutants from everyday activities. In addition, this Program Element helps the public understand the problems associated with urban stormwater runoff and can help build support for the stormwater program.

The Public Outreach Program Element is designed to implement and evaluate a comprehensive short- and long-term public education campaign that will inform the community about how actions may adversely impact urban stormwater discharges and, subsequently, local water bodies.

This Program Element is also designed to maximize the use of limited resources and to develop partnerships among all stakeholders in the SUA. Local stewardship and partnerships among governmental agencies, schools, universities, and private interests are vital components of the types of involvement envisioned in this Program Element.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.²⁷ The Public Outreach Program Control Measures are summarized in **Table 27**.

PO	Control Measure	Section 5
PO1	Public Participation	~
PO2	Hotline	[a]
PO3	Public Outreach Implementation	~
PO4	Public School Education	
PO5	Business Outreach	
PO6	Effectiveness Assessment	

Table 27. Public Outreach Program Control Measures (City)

[a] All hotline information is addressed in Section 5.1, illicit discharges.

All PWQCs are addressed by the Public Outreach Program Element. Public participation and public outreach implementation promote the proper disposal of waste.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.2.1 Public Participation (PO1)

The number of volunteers involved in stream cleanup events organized by the California Coastal Cleanup Day in San Joaquin County in 2016-2019 are shown in **Table 28**, with the amount of trash/debris removed.

²⁷ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

Date of Cleanup	Event Name	Number of Volunteers	Number of Sites	Trash/Debris Removed (tons)
9/17/2016	Coastal Cleanup Day	953	12	15.85
9/24/2016	Buckley Cove	42	12	7.15
9/16/2017	Coastal Cleanup Day	898	15	11.1
9/15/2018	Coastal Cleanup Day	605	16	11.6

Table 28. Stream Cleanup Events (City and County)

The amount of used oil and number of used oil filters collected via the used oil and Household Hazardous Waste program and the pounds of mercury collected through local events or the permanent collection site in 2016-2019 are shown in **Table 29**.

Table 29. Household Hazardous Waste (City and County)

	Amount Collected			
Metric	2016-2017	2017-2018	2018-2019	
Used oil (gallons)	190,466	180,743	192,064	
Oil filters (units)	42,815	53,525	62,525	
Mercury (pounds) ^[a]	175	501	531	

[a] Methylmercury collection is not tracked.

5.1.2.2 Public Outreach Implementation (PO3)

The City and County perform the Public Outreach Implementation Control Measure to inform the residential community and general public of the impacts of urban stormwater runoff and introduce steps they can take to reduce pollutants in stormwater runoff. Such outreach communicates to the City's residents and visitors the importance of stormwater quality protection and pollution prevention as it relates to the protection of the local water bodies.

Estimates of the total number of impressions made by the City with the general public in 2016-2019 are provided in **Table 30**.

	Estimated Number of Impressions		
Type of Outreach	2016-2017	2017-2018	2018-2019
Distribution of Educational Materials	3,829	4,329	6,300
Conduct Mixed Media Campaigns	5,000	682,257	220,000
Participate in Community-Wide Events	10,265	9,309	11,550
Provide Community Relations	NT	41,250	NT
Provide Outreach to School-Age Children	12,787	12,013	11,000
Provide Business Outreach	24	454	584
Total	31,905	749,612	249,434

Table 30. Public Outreach Program Implementation (City)

NT: Not Tracked

In addition, to date, a total of 44 Pet Waste Signs promoting the proper disposal of pet waste have been installed within ten existing City parks with stormwater inlets that discharge directly to local waterways.

5.1.3 Municipal Operations (MO)

The City, as part of its normal operations, conducts a number of activities (e.g., catch basin cleaning, street repairs, street sweeping via a contract) that may generate or mobilize pollutants. The Municipal Operations Program Element comprises Control Measures designed to ensure that these operations and maintenance activities are performed using processes and procedures to minimize the pollutants generated and to decrease the potential for pollutants to enter the storm drain system.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.²⁸ The Municipal Operations Program Control Measures are summarized in **Table 31**.

МО	Control Measure	Section 5
MO1	Sanitary Sewer Overflow and Spill Response	\checkmark
MO2	New Development and Construction Requirements for Municipal Capital Improvement Projects	
MO3	Pollution Prevention at City Facilities	
MO4	Landscape and Pest Management	\checkmark
MO5	Storm Drain System Maintenance	~
MO6	Street Cleaning and Maintenance	\checkmark
MO7	Parking Lots Maintenance	
MO8	Training	~
MO9	Effectiveness Assessment	

Table 31. Municipal Operations Program Control Measures (City)

All PWQCs are addressed by the Municipal Operations Program Element. The Municipal Operations Program Element includes control measures designed to ensure that operations and maintenance activities minimize the pollutants generated and decrease the potential for pollutants to enter the storm drain system.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.3.1 Sanitary Sewer Maintenance & Overflow and Spill Response (MO1)

To reduce the discharge of indicator bacteria and oxygen-demanding substances to the storm drain system, the City tracks and responds to sanitary sewer overflows (SSOs) that can be a source of human-derived fecal contamination in SUA waterways.

59

²⁸ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

Summaries of the SSOs tracked through the Sanitary Sewer Overflow Emergency Response Plan in 2016-2019 for the City are shown in **Table 32**. As seen below, very few SSOs entered the receiving water, even if they entered the MS4.²⁹

Table 32. Summary of SSOs (City)

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
SSOs	78	84	115
SSOs that entered the storm drain system	9	20	25
SSOs that entered a receiving water	3	5	3

5.1.3.2 Landscape and Pest Management (MO4)

The City tracks the municipal area treated with fertilizers and the amounts applied. A summary of the fertilizers applied by the City in 2016-2019 is shown in **Table 33**.

Table	33.	Summary	of	Fertilizers	Applied	(City)
lane	55.	Summary	U.	i er unzer s	Abbiied	(Oity)

		Applied to Golf Courses and Parks			
Metric		2016-2017	2017-2018	2018-2019	
Area treated with fertilizers (acres)		896	625	1,040	
Pounds of fertilizer	Nitrogen	8,785	3,728	8,734	
applied	Phosphorus	2,465	355	632	

²⁹ The Region-wide Permit specifically authorizes the ability to utilize the MS4 in case of a non-stormwater discharge spill or release, such as an SSO (General Permit at Provision II.B.4., pg. 16 ("Non-storm water discharges associated with emergency containment and/or cleanup of a pollutant spill or release may lawfully enter a MS4 provided that a) the non-storm water does not discharge from the MS4 to waters of the United States, b) the discharge is temporarily but fully contained in the MS4 to allow for characterization and disposal, c) the pollutants are subsequently removed from the MS4 system, and d) use of the MS4 system is necessary to address a threat to human health, the environment, and/or to avoid significant property damage.")).

5.1.3.3 Storm Drain System Maintenance (MO5)

The City implements a catch basin, pump station, and detention basin maintenance program, including regular inspection and cleanout. Summaries of prioritized catch basin, pump station, and detention basin inspections in 2016-2019 for the City are shown in **Table 34**.

	Total Number		Number of Inspections			
Туре	2016- 2017	2017- 2018	2018- 2019	2016- 2017	2017- 2018	2018- 2019
High Priority Catch Basins	3,132	3,132	3,275 ^[a]	5,206	4,418	2,916
Low Priority Catch Basins	13,304	13,304	13,246	263	635	1,899
Pump Stations	74	73	73	888	876	876
Flood Control Detention Basins ^[b]	5	5	5	5 ^[c]	10 ^[d]	10 ^[d]
Water Quality and Flood Control Detention Basins ^[b]	3	3	3	3 ^[c]	6 ^[d]	6 ^[d]

Table 34. Catch Basin, Pump Station, and Detention Basin Inspections (City)

[a] The increase in the documented number of high priority catch basins is attributable to staffing changes.

[b] Inspections and data tracking have been historically performed at these eight detention basins. As reported in the RAA (submitted July 1, 2019), 18 detention basins had been identified in the Phase I area. The remaining ten basins will be inspected in future years.

[c] Inspections conducted after significant storms.

[d] Regular inspections.

The City cleans catch basins, pump stations, and detention basins when the necessary criteria are met during inspections. Summaries of prioritized catch basin, storm drain, pump station, and detention basin cleaning and the amount of material/debris removed during storm drain maintenance activities (where tracked) in 2016-2019 for the City are shown in **Table 35**.

	Number Cleaned		Total Amount of Material/Debris Removed (tons)			
Туре	2016- 2017	2017- 2018	2018- 2019	2016- 2017	2017- 2018	2018- 2019
High Priority Catch Basins	2,972	774	630			
Low Priority Catch Basins	218	570	317	34.4	13	9.5
Storm Drain System ^[a]	12,086	30,380	35,967			
Pump Stations	37	35	37	55.24	55.5	102.1
Flood Control Detention Basins	0	5	5	[b]	0.58	0.70
Water Quality and Flood Control Detention Basins	0	3	3	[b]	73.15	103.65

Table 35. Catch Basin, Storm Drain, Pump Station, and Detention Basin Cleaning (City)

[a] Length of channel/pipe cleaned in linear feet.

[b] Maintenance of detention basins was scheduled for 2017-18.

The City tracks the number of catch basins stenciled with the message "No Dumping – Flows to Delta." These stencils are intended to inform the public and prevent illegal dumping and discharges to the storm drain. The number of catch basins stenciled in 2016-2019 for the City is shown in **Table 36**.

	Total Number		
Item	2016-2017	2017-2018	2018-2019
Catch Basins ^[a]	16,436	16,436	16,521
Catch Basins Stenciled to Date	16,436	16,436	16,521
Catch Basins Stenciled/Re-Stenciled by Volunteers and Businesses	23	0	842
Catch Basins Inspected by Municipal/Contract Staff	1,264	3,194	2,120
Catch Basins Permanently Imprinted with Storm Drain Message	1,033	3,194	3,194

Table 36. Number of Catch Basins Stenciled (City)

[a] The total number of catch basins is the sum of the high priority and low priority catch basins identified in **Table 34**.

The City requires large special events (as well as large venues) to address trash and debris removal, including containerization and street sweeping as appropriate. The number of special events required to obtain special use permits and comply with special use provisions to address trash and debris in 2016-2019 for the City are shown in **Table 37**.

62

Table 37. Large Events Required to Comply (City)

	Total Number				
ltem	2016-2017	2017-2018	2018-2019		
Special Use Permits	3	30	29		
Special Use Provisions	3	5	4		

Estimates of the amount of material collected during events in the City in 2016-2019 are shown in **Table 38**.

		Amount of Tras	h/Material (tons)
Date(s)	Event Name	Total Removed	Amount Recycled
7/04/2016	4 th of July and Movies at the Point	2,873.77	0.03
4/23/2017	Earth Day	1.13	0.04
5/05/2017	Cinco de Mayo Festival	6.83	0.95
	2016-2017 Total	2,881.7	1.0
7/4/2017	4 th of July	NT	NT
7/29/2017	Bump Music Festival	NT	NT
11/18-19/2017	Congreso Carismatico Evangelization	NT	NT
4/23/2018	Earth Day	0.20	0.05
5/6/2018	Cinco de Mayo Festival	42.67	22.95
	2017-2018 Total	42.9	23.0
7/4/2018	4 th of July	0.83	NT
11/18-19/2018	Congreso Carismatico Evangelization	NT	NT
12/1/2018	Tree Lighting Ceremony	NT	NT
5/5/2019	Cinco de Mayo Festival	1.44	0.30
	2018-2019 Total	2.27	0.3
	Three-Year Total	2,926.9	24.3

Table 38. Trash/Material Collected Special Events (City)

NT: Not Tracked

5.1.3.4 Street Cleaning and Maintenance (MO6)

Summaries of street sweeping activities and the amount of material removed by street sweeping and green waste collection activities performed in 2016-2019 for the City are shown in **Table 39**.

 Table 39. Street Sweeping and Green Waste Collection Activities (City)

	Amount		
Metric	2016-2017	2017-2018	2018-2019
Total miles swept	48,731	49,289	49,903
Total amount of debris removed (tons)	8,040	7,485	7,262
Total amount of green waste collected (tons)	50,760	64,264	62,048

5.1.3.5 Training (MO8)

The trainings associated with the Municipal Operations Program attended by City staff between 2016-2019 are summarized in **Table 40**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
12/19/2016	19/2016 HazWaste, FPPP, SPCC Training		7	Community Enhancement
12/20/2016	HazWaste, FPPP, SPCC Training	Naste, FPPP, SPCC Training 12 1		Facilities Maintenance
12/20/2016	HazWaste, FPPP, SPCC Training	20	20	Fleet Maintenance
12/21/2016	HazWaste, FPPP, SPCC Training	14	14	Street Maintenance
12/21/2016	HazWaste, FPPP, SPCC Training	9	9	Signal Shop
12/22/2016	HazWaste, FPPP, SPCC Training	5	5	Tree Crew
10/31/2018	Storm Patrol	37	Sr CSO & CSO	Collections

Table 40. Municipal Operations Program Trainings Attended (City)

5.1.4 Industrial and Commercial (IC)

The purpose of the Industrial and Commercial Program Element is to effectively prohibit unauthorized non-stormwater discharges and reduce pollutants in stormwater runoff from industrial and commercial facilities to the MEP. The program for industrial and commercial facilities is accomplished by tracking, inspecting, providing outreach, and ensuring compliance at industrial and commercial facilities identified as potentially significant sources of pollutants in stormwater.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³⁰ The Industrial and Commercial Program Control Measures are summarized in **Table 41**.

IC	Control Measure	Section 5
IC1	Facility Inventory	~
IC2	Prioritization and Inspection	~
IC3	Industrial/Commercial Outreach	\checkmark
IC4	Enforcement	\checkmark
IC5	Training	~
IC6	Effectiveness Assessment	

Table 41. Industrial and Commercial Program Control Measures (City)

All PWQCs are addressed by the Industrial and Commercial Program Element. The Industrial and Commercial Program Element includes control measures designed to prohibit unauthorized non-stormwater discharges and reduce pollutants in stormwater runoff from industrial and commercial facilities. These include prioritization and inspection of industrial and commercial facilities and implementation of BMPs through the distribution of BMP fact sheets during inspections.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.4.1 Facility Inventory and Prioritization and Inspection (IC1 and IC2)

The City prioritizes all industrial facilities, and commercial facilities that may be significant sources of pollutants, as high priority and inspects each facility twice during the five-year permit term. The inspection results for industrial facilities in 2016-2019 for the City are shown in **Table 42**.

65

³⁰ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Industrial facilities in current inventory	124	162	171
Facilities prioritized as high	124	162	171
Facilities inspected during the reporting period	[a]	64	61
Facilities with SWPPPs on site ^[b]	[a]	60	42
Facilities in compliance with stormwater control requirements ^[c]	[a]	51	13
Facilities requiring follow-up inspections	[a]	13	17
Facilities in compliance after follow-up inspections	[a]	13	5

[a] In 2016-2017, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions.

[b] The number of facilities with SWPPPs on site is tabulated as the total number of facilities minus the number with "SWPPP not on site" written in the inspector comments.

[c] In 2017-2018, City inspectors initiated the use of a defined checklist to determine whether an industrial facility passed its initial inspection. The number of facilities in compliance with stormwater control requirements is tabulated as the total number of facilities minus the number which failed the initial inspection.

The inspection results for commercial facilities in 2016-2019 for the City are shown in Table 43.

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Commercial facilities in current inventory	[a]	359	938
Facilities prioritized as high and requiring inspection	[a]	359	938
Facilities inspected during the reporting period	[a]	359	636
Facilities adequately implementing BMPs ^[b]	[a]	161	45
Facilities in general compliance ^[c]	[a]	135	156
Facilities requiring follow-up inspections ^[d]	[a]	25	45
Facilities in compliance after follow-up inspections	[a]	25	23

Table 43. Summary of Commercial Inspections (City)

[a] In 2016-2017, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions.

[b] The number of facilities adequately implementing BMPs is tabulated as the number of facilities with an inspection score no greater than 2 for the inspection categories "Inspection of facility structure," "Waste Management," and "Fluid Management," and an inspection score no greater than 3 for the inspection category "Illicit connections."

[c] In 2017-2018, City inspectors initiated the use of a defined checklist to determine whether a commercial facility passed its initial inspection. The number of facilities in general compliance is tabulated as the number of facilities which pass the inspection, those which have no issues, or those which have an inspection score no greater than 3 for all inspection categories, including "Storm Drains," "Facility Structure," "Waste Management," and "Fluid Management."

[d] Commercial facilities with multiple or egregious BMP implementation failures are re-inspected. Commercial facilities with minor BMP implementation failures are issued a Notice of Warning and documentation is required to show compliance in lieu of a follow-up inspection. A single enforcement action may be sent to the owner of multiple properties.

5.1.4.2 Industrial/Commercial Outreach (IC3)

In order to assist the industrial and commercial facilities in selecting and implementing the appropriate types of BMPs, the City developed BMP Fact Sheets for the high priority industrial and commercial businesses. The BMP Fact Sheets are distributed during the inspections and made available on the City's website.³¹

Summaries of the BMP Fact Sheets distributed during industrial and commercial inspections in 2016-2019 for the City are shown in **Table 44**.

	Total Number Distributed			
Category	2016-2017	2017-2018	2018-2019	
Industrial				
Industrial Facilities	82	64	19	
Commercial				
Automotive-Related Facilities	115	89	163	
Restaurants/Food Service Establishments	0	209	396	
Total	197	362	578	

Table 44. BMP Fact Sheets Distributed During Industrial/Commercial Inspections (City)

5.1.4.3 Enforcement (IC4)

The Enforcement Control Measure outlines the progressive levels of enforcement applied to industrial and commercial facilities that are out of compliance with local ordinances and establishes the protocol for referring apparent violations of facilities subject to the Industrial General Permit to the Regional Water Board.

The number and types of enforcement actions taken by the City during 2016-2019 are summarized in **Table 45**.

Table 45. Industria	and Commercial	Program Enforce	ment Actions Taken	(Citv)
				(0.0)

	Number of Actions ^[a]				
Type of Enforcement Action	2016-2017 ^[b]	2017-2018	2018-2019		
Administrative	Administrative				
Violation Warning Notice	[b]	37	9		
Notice of Violation	[b]	33	65		
Cease and Desist Order	[b]	2	4		
Stop Work Order	[b]	0	0		
Administrative Citation (Fine)	[b]	2	1		
Criminal Enforcement[c]					
Misdemeanor	[b]	0	0		

³¹ <u>http://www.stocktongov.com/government/departments/municipalUtilities/utilStormOut.html</u>

	Number of Actions ^[a]		
Type of Enforcement Action	2016-2017 ^[b]	2017-2018	2018-2019
Infraction	[b]	0	0
Total	[b]	74	79

[a] The total number of enforcement actions taken may be smaller than the number of facilities with inadequate BMPs due to enforcement actions that are issued to the owners of multiple properties.

[b] In 2016-2017, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions.

[c] This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this section can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

The number of repeat offenders identified and referrals made to other agencies by the City during 2016-2019 are summarized in **Table 46**.

Table 46. Industrial and Commercial Program Repeat Offenders (City)

	Number of Incidents		
Metric	2016-2017 ^[a]	2017-2018	2018-2019
Repeat offenders	[a]	1	1
Referred to Regional Water Board	[a]	0	12

[a] In 2016-2017, the City reorganized its efforts regarding industrial and commercial inspections and follow-up enforcement actions.

5.1.4.4 Training (IC5)

City staff have attended the California Stormwater Quality Association (CASQA) trainings between 2016-2019, which offer Continuing Education Units related to the Industrial and Commercial Program. The trainings associated with the Industrial and Commercial Program attended by City staff between 2016-2019 are summarized in **Table 47**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
9/11-14/2016	CASQA Annual Conference: Illicit Discharges Training Workshop Industrial Treatment Solutions QISP Forum	2	Deputy Director Program Manager	Stormwater
9/24-27/2017	CASQA Annual Conference: Industrial Training Workshop Public and Private Enforcement of the IGP	2	Deputy Director Program Manager	Stormwater
10/14-17/2018	CASQA Annual Conference: IGP Compliance Implementation and TMDLs Trainer of Record – IGP and QISP	2	Deputy Director Environmental Control Officer	Stormwater

5.1.5 Construction (CO)

During construction projects, a number of activities may generate or mobilize pollutants. The purpose of the Construction Program Element is to coordinate City programs and resources to effectively reduce pollutants in runoff from construction sites during all construction phases.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³² The Construction Program Control Measures are summarized in **Table 48**.

со	Control Measure	Section 5
CO1	Municipal Code for Construction Sites	
CO2	Plan Review and Approval Process	
CO3	Construction Projects Inventory	
CO4	Construction Outreach	\checkmark
CO5	Construction Site Inspections & BMP Implementation	\checkmark
CO6	Enforcement	\checkmark
C07	Training	\checkmark
CO8	Effectiveness Assessment	

 Table 48. Construction Program Control Measures (City)

Dissolved oxygen, methylmercury, and trash are addressed by the Construction Program Element. The Construction Program Element includes control measures to effectively reduce pollutants in runoff from construction sites during all construction phases, including inspections of construction sites and implementation of BMPs through the distribution of BMP fact sheets during inspections.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.5.1 Construction Outreach (CO4)

A summary of the types and number of outreach materials (BMP fact sheets) distributed by the City during construction site inspections performed in 2016-2019 is shown in **Table 49**.

Year	Name of Outreach Material	Total Number Distributed
2016-2017	Not tracked ^[a]	0
2017-2018	BMP Inspection Criteria	71
2018-2019	BMP Inspection Criteria	376

Table 49. BMP Fact Sheets Distributed During Construction Inspections (City)

[a] Outreach material distribution was not tracked.

³² These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

5.1.5.2 Construction Site Inspections & BMP Implementation (CO5)

The City inspects all construction sites greater than or equal to one (1) acre during the wet and dry seasons. The inspection program ensures that the specific minimum requirements are effectively implemented at construction sites.

A summary of the active construction sites and inspections conducted by the City in 2016-2019 is shown in Table 50.

	Total Number			
Metric	2016-2017	2017-2018	2018-2019	
Active construction sites ≥1 acre in size	34	44	80	
Regular inspections conducted at active construction sites	246	71	376	
Follow-up inspections conducted due to violations	11	48	177	

Table 50. Summary of Construction Site Inspections (City)

5.1.5.3 Enforcement (CO6)

The Enforcement Control Measure outlines the progressive levels of enforcement applied to construction sites that are out of compliance with local ordinances and establishes the protocol for referring apparent violations of construction sites subject to the General Construction Permit to the Regional Water Board. The progressive enforcement and referral policy, as well as the accompanying legal authority to execute it, is an important tool for providing a fair and equitable approach to bringing contractors and developers into compliance with the City's municipal code requirements.

The number and types of enforcement actions taken by the City in 2016-2019 during construction site inspections are summarized in Table 51.

able 51. Construction Program Enforcement Actions Taken (City)				
	Numl	Number of Actions		
Type of Enforcement Action	2016-2017	2017-2018	2018-2019	
Verbal Warning	105	0	0	
Administrative				
Violation Warning Notice	14	10	51	
Notice of Violation	7 NOV ^[a] 87 Notice to Clean 55 Correction Orders	29	91	
Cease and Desist Order	0	1	1	
Stop Work Order	0	1	4	
Administrative Citation (Fine)	0	3	7	
Criminal Enforcement				

71

	Number of Actions			
Type of Enforcement Action	2016-2017	2017-2018	2018-2019	
Misdemeanor	0	0	0	
Infraction	0	0	0	
Total	268	44	154	

 [a] In 2016-2017, the Notice of Violation (NOV) form used by the City includes the following enforcement options: Cease and Desist Order; Violation Warning Notice; Notice to Clean; Stop Work Order; Fine; and Correction Order.

The number of repeat offenders identified by the City during 2016-2019 are summarized in **Table 52**.

Table 52. Construction Program Repeat Offenders (City)

	Number of Incidents			
Metric	2016-2017	2017-2018	2018-2019	
Repeat offenders	7	17	57	

5.1.5.4 Training (CO7)

The trainings associated with the Construction Program attended by City staff between 2016-2019 are summarized in **Table 53**.

 Table 53. Construction Program Trainings Attended (City)

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
10/7/2016	Construction/Erosion Control	19	NT	Community Development/ Stormwater/ Engineering
4/4/2019	Construction Stormwater Inspections	4	Deputy Director, Program Manager	Stormwater Env. Control Office
9/11-14/2016	CASQA Annual Conference: CGP Compliance: Sustainable Soil Strategies QSP/QSD Forum	2	Deputy Director Program Manager	Stormwater
9/24-27/2017	CASQA Annual Conference: Trainer of Record Forum: CGP QSP/QSD Forum	2	Deputy Director Program Manager	Stormwater
10/14-17/2018	CASQA Annual Conference: SWPPP Specifications CSD/QSP Collaboration	2	Deputy Director Environmental Control Officer	Stormwater

72

NT: Not Tracked

5.1.6 Planning and Land Development (LD)

The addition of impervious areas for homes, industrial and commercial businesses, parking lots, streets and roads may increase the amount of stormwater runoff, as well as the potential for pollution. The Planning and Land Development Program Element ensures that the impacts on stormwater quality from new development and redevelopment are limited through implementation of Site Design Controls, Source Controls, Volume Reduction Measures, and Treatment Controls. The general strategy for development is to avoid, minimize, and mitigate (in that order) the potential adverse impacts to stormwater. The potential for long-term stormwater impacts from development is also reduced by requiring ongoing operation and maintenance of post-construction treatment controls selected for a site.

The City has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³³ The Planning and Land Development Program Control Measures are summarized in **Table 54**.

LD	Control Measure	Section 5
LD1	Incorporation of Water Quality Protection Principles into City Procedures and Policies	
LD2	New Development Standards	
LD3	Plan Review Sign-Off	✓
LD4	Maintenance Agreement and Transfer	✓
LD5	Training	✓
LD6	Effectiveness Assessment	

Table 54. Planning and Land Development Program Control Measures (City)

All PWQCs are addressed by the Planning and Land Development Program Element. The Planning and Land Development Program Element includes control measures to ensure that the impact on stormwater quality from new development and redevelopment is limited. The general strategy for development is to avoid, minimize, and mitigate (in that order) the potential adverse impacts to stormwater.

The implementation of this Program Element during 2016-2019 is summarized below.

5.1.6.1 Plan Review Sign-off (LD3)

The City conducts comprehensive reviews of development plans to ensure that stormwater controls minimize water quality impacts by PWQCs. The priority projects reviewed by the City in 2016-2019 are summarized in **Table 55**.

³³ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

	Number Reviewed			
Metric	2016-2017	2017-2018	2018-2019	
Project Plans Reviewed	15	9	23	
Acres Covered by Approved Priority Projects ^[a]	115.9	219.7	149.46	
Priority Project Category ^[b]				
Significant Redevelopment	1	2	10	
Commercial Developments (≥100,000 SF)	5	2	7	
Commercial Developments (<u>></u> 5,000 SF)	3	2	2	
Automotive Repair Shops	0	0	1	
Retail Gasoline Outlets	0	2	0	
Restaurants	0	1	1	
Parking Lots (<u>> 5</u> ,000 SF or 25 spaces)	5	0	2	
Streets and Roads (>1 acre paved surface)	1	0	0	
Home Subdivisions (\geq 10 units)	0	0	0	
Total Projects	15	9	23	

Table 55. Project Plans and Priority Projects Reviewed (City)

[a] As of June 30 of each fiscal year.

[b] The Development Standards apply to all Priority Projects or phases of Priority Projects at the date of adoption unless the projects already had approval by the City or County Engineer, a permit for development or construction or an approved tentative map prior to the Development Standards date of adoption.

The type and number of post-construction BMPs (control measures) implemented as part of the priority projects that were approved by the City in 2016-2019 are shown in **Table 56**.

	Total Number Approved			
Control Measure Type	2016-2017	2017-2018	2018-2019	
Site Design Controls				
G-1: Conserve Natural Areas	11	7	14	
G-2: Protect Slopes and Channels	9	4	13	
G-3: Minimize Soil Compaction	12	9	19	
G-4: Minimize Impervious Area	13	7	21	
Total Site Design Controls	45	27	67	
Source Controls				
S-1: Storm Drain Message and Signage	12	8	23	
S-2: Outdoor Materials Storage Area Design	0	1	1	
S-3: Outdoor Trash Storage and Waste Handling Area Design	4	7	15	
S-4: Outdoor Loading/Unloading Dock Area Design	3	1	3	
S-5: Outdoor Repair/Maintenance Bay Design	0	0	0	
S-6: Outdoor Vehicle/Equipment/Accessory Wash Area Design	0	2	2	
S-7: Fuel Area Design	0	2	0	
Total Source Controls	19	21	44	
Volume Reduction Measures			•	
V-1: Rain Garden	5	2	0	
V-2: Rain Barrel/ Cistern	0	0	0	
V-3: Vegetated Roof	0	0	0	
V-4: Interception Trees	4	2	3	
V-5: Grassy Channel	1	1	2	
V-6: Vegetated Buffer Strip	0	1	1	
Total Volume Reduction Measures	10	6	6	
Treatment Control Measures				
L-1: Bioretention	2	0	16	
L-2: Stormwater Planter	2	0	1	
L-3: Tree-well Filter	0	0	0	
L-4: Infiltration Basin	0	0	0	
L-5: Infiltration Trench	0	5	0	
L-6: Porous Pavement Filter	0	0	0	
L-7: Vegetated (Dry) Swale	1	0	1	
L-8: Grassy Swale	3	0	2	
L-9: Grassy Filter Strip	1	0	0	
C-1: Constructed Wetland	0	0	0	
C-2: Extended Detention Basin	0	0	0	
C-3: Wet Pond	0	0	0	
C-4: Proprietary Treatment Controls (see Table 57 for details)	2	3	10	
Total Treatment Control Measures	11	8	30	

Table 56. Post-Construction BMPs Implemented in Priority Projects (City)

The specific proprietary treatment control measures (C-4) approved by the City in 2016-2019 are shown in **Table 57**.

Facility Name	Type of Treatment Unit		
2016-2017			
COS	Contech CDS		
Hammer Lane			
Mercedes Benz	Contech Stormfilter		
2017-2018			
ARCO AM/PM	MWS-I -4-8-UG-V		
6009 N El Dorado Street			
Starbucks	MWS-L-4-8 & MWS-L-4-6		
510 & 520 N El Dorado Street			
ARCO AM/PM	Contech Stormfilter		
10715 Trinity Parkway			
2018-2019			
Anchor Village	Contech Stormfilter		
California Water Services	Kristar Enterprise Flogard		
Performance Drive Warehouse	Contech Stormfilter		
804 North Hunter Street	Contech Stormfilter		
Sierra Vista Redevelopment	Contech Stormfilter		
District Facilities Maintenance	Flogard Catch Basin Insert Filter		
Zephyr Court Warehouse	Contech Stormfilter		
Humphreys' University Gymnasium	Triton Drop Inlet		
Gurdwara Sahib Sikh Temple	Jensen Precast		
Stonebrier Apartments	Contech Stormfilter		

Table 57. Proprietary Treatment Control Measures in Projects (City
--

5.1.6.2 Maintenance Agreement and Transfer (LD4)

The City performs post-construction BMP maintenance oversight to ensure that postconstruction BMPs continue to function correctly and minimize water quality impacts. The number of completed priority projects with post-construction BMPs, as well as the number of inspections conducted and enforcement actions taken in 2016-2019 due to improper maintenance, are shown in **Table 58**.

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Completed priority projects with post- construction BMPs	6	9	23
Inspections conducted	6	0	0 ^[a]
Enforcement actions taken due to improper maintenance	0	0	0

Table 58. Post-Construction BMP Inspections and Enforcement (City)

[a] During 2019-2020, the program is being modified to address the Trash Amendments and general issues that have arisen over the years. Regular post construction inspections are anticipated to begin in 2020-2021.

5.1.6.3 Training (LD5)

The trainings associated with the Planning and Land Development Program attended by City staff between 2016-2019 are summarized in **Table 59**.

Table 59.	Planning and	Land Developmen	t Program [*]	Trainings Attended	(Citv)
10010 001		and bororophion			()))

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
9/11-14/2016	CASQA Annual Conference: Watershed Management Plans and Green Infrastructure Plan Implementation BMP Implementation of LID Standards Guidance on Green Infrastructure: Making LID in the Right-of-Way Standard Practice	2	Deputy Director Program Manager	Stormwater
9/24-27/2017	CASQA Annual Conference: International LID Implementing LID and Green Infrastructure Green Infrastructure Construction and Inspection	2	Deputy Director Program Manager	Stormwater
10/14-17/2018	CASQA Annual Conference: International LID LID BMPs in a Semi-Arid Environment	2	Deputy Director Environmental Control Officer	Stormwater

5.2 COUNTY PROGRAM IMPLEMENTATION

5.2.1 Illicit Discharges (ID)

An illicit discharge is defined as any discharge to the storm drain system that is prohibited under local, state, or federal statutes, ordinances, codes, or regulations. Illicit discharges include the disposal of materials, such as paint, spa water, swimming pool water, or waste oil, into the storm drain or the discharge of waste streams containing pollutants to the storm drain. Illegal connections are a subset of illicit discharges. Illegal connections are defined as undocumented and/or unpermitted physical connections from any facility to the storm drain system or receiving water (e.g., a sanitary sewer connection to the storm drain).

Because illicit discharges and illegal connections can be a significant source of pollutants to the storm drain system and receiving waters, the purpose of this Program Element is to ensure implementation of a comprehensive program for detecting, responding to, investigating, and eliminating these types of discharges and connections in an efficient and effective manner.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³⁴ The Illicit Discharges Program Control Measures are summarized in **Table 60**.

ID	Control Measure	Section 5
ID1	Detection of Illicit Discharges and Illegal Connections	~
ID2	Illegal Connection Identification and Elimination	\checkmark
ID3	Investigation/Inspection and Follow Up	\checkmark
ID4	Enforcement	~
ID5	Training	✓
ID6	Effectiveness Assessment	

Table 60. Illicit Discharge Program Control Measures (County)

All PWQCs are addressed by the Illicit Discharge Program Element since illicit discharges and illegal connections could be a source of any of the PWQCs. The County performs the following actions to address this Program Element:

- Proactively detect illicit discharges (IDs) and illegal connections (ICs) through public reporting and field crew inspections;
- Maintain and advertise the 24-hour Hotlines to encourage the public to report water pollution problems;

³⁴ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

- Train staff to recognize illegal discharges so that, during their normal maintenance activities, they can identify signs of previous, current, or potential non-stormwater discharges/connections or illegal dumping into the storm drain system;
- Investigate and eliminate illegal connections;
- Coordinate with the Planning and Land Development and Construction Programs to ensure that potential ICs are identified during project planning and construction phases.

The implementation of this Program Element during 2016-2019 is summarized below.

5.2.1.1 Detection of Illicit Discharges and Illegal Connections (ID1)

Illicit discharges were detected through public reporting and field crew inspections. The number of discharges observed or complaints received and the number of illicit discharges verified in 2016-2019 by the County are shown in **Table 61**.

	Number			
Source	2016-2017	2017-2018	2018-2019	
Illicit Discharges Observed or W	ater Pollution Co	mplaints Receive	d	
Hotline	1	4	0	
Field Staff	0	8	2	
Total	1	12	2	
Number of Illicit Discharges Ver	ified ^[a]			
Hotline	1	4	0	
Field Staff	0	6	2	
Total	1	10	2	

Table 61. Detection of Illicit Discharges (County)

[a] The number verified is the number with evidence of discharge that is not exempt or in compliance.

5.2.1.2 Illegal Connection Identification and Elimination (ID2)

No illegal connections were identified by the County between 2016-2019.

5.2.1.3 Investigation/Inspection and Follow Up (ID3)

The total number of illicit discharges and illegal connections reported, illicit discharges verified and cleaned, and illegal connections eliminated in 2016-2019 by the County are shown in **Table 62**.

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Illicit Discharges Reported	1	12	2
Illicit Discharges Verified	1	10	2
Illicit Discharges Requiring Clean-up ^[a]	1	7	2
Illegal Connections Reported	0	0	0
Illegal Connections Eliminated	0	0	0

Table 62. Total Number of Illicit Discharges and Illegal Connections (County)

[a] Including clean-up by a contractor, resident, commercial business or industry, or field crew.

The types of materials involved in the County's verified incidents were tracked, as shown in **Table 63**.

Table 63. Materials Identified in Verified Incidents (County)

	Number of Incidents			
Materials	2016-2017	2017-2018	2018-2019	
Hydrocarbons	Not tracked ^[a]	2	1	
Wastewater	Not tracked ^[a]	7	1	
Trash and Debris	Not tracked ^[a]	1	0	
Total	-	10	2	

[a] Materials detected during verified incidents were not tracked.

5.2.1.4 Enforcement (ID4)

The Enforcement Control Measure establishes policies and procedures and outlines the progressive levels of enforcement applied to responsible parties not complying with County ordinances. By adopting and implementing a progressive enforcement policy, the County ensures that the program is effective at reducing illicit discharges and illegal connections. The County tracked enforcement actions in the Illicit Discharges Database.

The number and types of enforcement actions taken by the County during 2016-2019 are summarized in **Table 64**.

	Number of Actions		
Type of Enforcement Action	2016-2017	2017-2018	2018-2019
Verbal Warning	0	5	0
Administrative			
Correction Order	1	0	1
Notice of Violation	0	0	0
Notice to Clean	0	0	0
Administrative Citation (Fine)	0	0	0
Criminal Enforcement ^[a]			
Misdemeanor	0	0	0
Infraction	0	0	0
Total	1	5	1

Table 64. Illicit Discharge Program Enforcement Actions Taken (County)

[a] This category presumes that an action turned over to the District Attorney resulted in a criminal prosecution within the year of the incident. However, data for this category can only be updated in subsequent years (i.e., after criminal prosecution has been successful).

The number of repeat offenders identified and referrals made to other agencies by the County during 2016-2019 are summarized in **Table 65**.

Table 65. Illicit Discharge Program Repeat Offenders (County)

	Number of Incidents		
Metric	2016-2017	2017-2018	2018-2019
Repeat offenders	0	0	0
Referred to Environmental Health Department	1	3	0
Referred to the Regional Water Board	0	0	0
Referred to the City	0	2	0

5.2.1.5 Training (ID5)

The trainings associated with the Illicit Discharge Program Element attended by County staff between 2016-2019 are summarized in **Table 66**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
5/18/2017	Stormwater Regional Training	2	Engineer IV Management Analyst II	Water Resources
6/28/2018	Module 1: Illicit Discharge and Illegal Connections	51	NT	Road & Traffic Maintenance
5/16/2019	San Joaquin Valley Stormwater Quality Partnership 2019 Regional Training	2	Engineering Assistant Management Analyst II	Water Resources

Table 66. Illicit Discharge Program Trainings Attended (County)

NT: Not Tracked

5.2.2 Public Outreach (PO)

The purpose of the Public Outreach Program Element is to inform the public (increase knowledge) regarding the impacts of urban stormwater runoff and introduce steps the public can take (change behavior) to reduce pollutants from everyday activities. In addition, this Program Element helps the public understand the problems associated with urban stormwater runoff and can help build support for the stormwater program.

The Public Outreach Program Element is designed to implement and evaluate a comprehensive short- and long-term public education campaign that will inform the community about how actions may adversely impact urban stormwater discharges and, subsequently, local water bodies.

This Program Element is also designed to maximize the use of limited resources and to develop partnerships among all stakeholders in the SUA. Local stewardship and partnerships among governmental agencies, schools, universities, and private interests are vital components of the types of involvement envisioned in this Program Element.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³⁵ The Public Outreach Program Control Measures are summarized in **Table 67**.

РО	Control Measure	Section 5
PO1	Public Participation	\checkmark
PO2	Hotline	[a]
PO3	Public Outreach Implementation	\checkmark
PO4	Public School Education	
PO5	Business Outreach	
PO6	Effectiveness Assessment	

Table 67. Public Outreach Program Control Measures (County)

[a] All hotline information is addressed in Section 5.1, illicit discharges.

All PWQCs are addressed by the Public Outreach Program Element. Public participation and public outreach implementation promote the proper disposal of waste.

The implementation of this Program Element during 2016-2019 is summarized below.

³⁵ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

5.2.2.1 Public Participation (PO1)

The number of volunteers involved in stream cleanup events organized by the California Coastal Cleanup Day in San Joaquin County in 2016-2019 are shown in **Table 68**, with the amount of trash/debris removed.

Date of Cleanup	Event Name	Number of Volunteers	Number of Sites	Trash/Debris Removed (tons)
9/17/2016	Coastal Cleanup Day	953	12	15.85
9/24/2016	Buckley Cove	42	12	7.15
9/16/2017	Coastal Cleanup Day	898	15	11.1
9/15/2018	Coastal Cleanup Day	605	16	11.6

Table 68. Stream Cleanup Events (City and County)

The amount of used oil and number of used oil filters collected via the used oil and Household Hazardous Waste program and the pounds of mercury collected through local events or the permanent collection site in 2016-2019 are shown in **Table 69**.

Table 69. Household Hazardous Waste (City and County)

	Amount Collected			
Metric	2016-2017	2017-2018	2018-2019	
Used oil (gallons)	190,466	180,743	192,064	
Oil filters (units)	42,815	53,525	62,525	
Mercury (pounds) ^[a]	175	501	531	

84

[a] Methylmercury collection is not tracked.

5.2.2.2 Public Outreach Implementation (PO3)

The County performs the Public Outreach Implementation Control Measure to inform the residential community and general public of the impacts of urban stormwater runoff and introduce steps they can take to reduce pollutants in stormwater runoff. Such outreach communicates to the County's residents and visitors the importance of stormwater quality protection and pollution prevention as it relates to the protection of the local water bodies.

Estimates of the total number of impressions made by the County with the general public in 2016-2019 are provided in **Table 70**.

	Estimated Number of Impressions		
Type of Outreach	2016-2017	2017-2018	2018-2019
Distribution of Educational Materials	NT	NT	1,177
Conduct Mixed Media Campaigns	903,887	NT	NT
Participate in Community-Wide Events	9,240	8,409	308
Provide Community Relations	NT	NT	24,500
Provide Outreach to School-Age Children	NT	NT	13,370
Provide Business Outreach	NT	NT	29
Total	913,127	8,409	25,985

Table 70. Public Outreach Program Implementation (County)

NT: Not Tracked

5.2.3 Municipal Operations (MO)

The County, as part of its normal operations, conducts a number of activities (e.g., catch basin cleaning, street repairs, street sweeping via a contract) that may generate or mobilize pollutants. The Municipal Operations Program Element comprises Control Measures designed to ensure that these operations and maintenance activities are performed using processes and procedures to minimize the pollutants generated and to decrease the potential for pollutants to enter the storm drain system.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³⁶ The Municipal Operations Program Control Measures are summarized in **Table 71**.

MO	Control Measure	Section 5
MO1	Sanitary Sewer Overflow and Spill Response	\checkmark
MO2	New Development and Construction Requirements for Municipal Capital Improvement Projects	
MO3	Pollution Prevention at City Facilities	
MO4	Landscape and Pest Management	\checkmark
MO5	Storm Drain System Maintenance	~
MO6	Street Cleaning and Maintenance	\checkmark
MO7	Parking Lots Maintenance	
MO8	Training	✓
MO9	Effectiveness Assessment	

Table 71. Municipal Operations Program Control Measures (County)

All PWQCs are addressed by the Municipal Operations Program Element. The Municipal Operations Program Element includes control measures designed to ensure that operations and maintenance activities minimize the pollutants generated and decrease the potential for pollutants to enter the storm drain system.

The implementation of this Program Element during 2016-2019 is summarized below.

³⁶ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.
5.2.3.1 Sanitary Sewer Maintenance & Overflow and Spill Response (MO1)

To reduce the discharge of indicator bacteria and oxygen-demanding substances to the storm drain system, the County tracks and responds to sanitary sewer overflows (SSOs) that can be a source of human-derived fecal contamination in SUA waterways.

Summaries of the SSOs tracked through the Sanitary Sewer Overflow Emergency Response Plan in 2016-2019 for the County are shown in **Table 72**. As seen below, no SSOs entered the receiving water, even if they entered the MS4.³⁷

Table 72. Summary of SSOs (County)

	Total Number			
Metric	2016-2017	2017-2018	2018-2019	
SSOs	6	3	3	
SSOs that entered the storm drain system	2	1	0	
SSOs that entered a receiving water	0	0	0	

5.2.3.2 Landscape and Pest Management (MO4)

The County did not apply fertilizers during 2016-2019.

³⁷ The Region-wide Permit specifically authorizes the ability to utilize the MS4 in case of a non-stormwater discharge spill or release, such as an SSO (General Permit at Provision II.B.4., pg. 16 ("Non-storm water discharges associated with emergency containment and/or cleanup of a pollutant spill or release may lawfully enter a MS4 provided that a) the non-storm water does not discharge from the MS4 to waters of the United States, b) the discharge is temporarily but fully contained in the MS4 to allow for characterization and disposal, c) the pollutants are subsequently removed from the MS4 system, and d) use of the MS4 system is necessary to address a threat to human health, the environment, and/or to avoid significant property damage.")).

5.2.3.3 Storm Drain System Maintenance (MO5)

The County implements a catch basin, pump station, and detention basin maintenance program, including regular inspection and cleanout. Summaries of prioritized catch basin, pump station, and detention basin inspections in 2016-2019 for the County are shown in **Table 73**.

	Total Number			Nu	mber Inspec	ted
Туре	2016- 2017	2017- 2018	2018- 2019	2016- 2017	2017- 2018	2018- 2019
High Priority Catch Basins	407	407 ^[a]	407	240	314	336
Low Priority Catch Basins	1,067	1,067 ^[a]	1,289	400	608	1,046
Pump Stations	14	14	20	14	14	20
Dry Detention Basins	5	10 ^[b]	10	5	10	10

 Table 73. Catch Basin, Pump Station, and Detention Basin Inspections (County)

[a] The total number of catch basins changed from 1,474 in 2016-2017 to 1,696 in 2017-2018. Prioritization of the remaining 222 catch basins was not complete before June 30, 2018.

[b] In 2016-2017, the total number of dry detention basins was based on data only from Utilities Maintenance. The number of dry detention basins reported in 2017-2018 is greater because data from Utilities Maintenance, Road Maintenance, and Channel Maintenance were used, accounting for all such basins within the County's Phase I area. As reported in the RAA (submitted July 1, 2019), nine (9) detention basins had been identified in the Phase I area; however, a tenth basin was identified subsequent to RAA submittal.

The County cleans catch basins, pump stations, and detention basins when the necessary criteria are met during inspections. Summaries of prioritized catch basin, storm drain, pump station, and detention basin cleaning and the amount of material/debris removed during storm drain maintenance activities (where tracked) in 2016-2019 for the County are shown in **Table 74**.

	Number Cleaned			Total Amo Re	ount of Mater emoved (ton	rial/Debris s)
Туре	2016- 2017	2017- 2018	2018- 2019	2016- 2017	2017- 2018 ^[a]	2018- 2019
High Priority Catch Basins	200	311	336	2 E [b]		50.2
Low Priority Catch Basins	255	603	1,046	3.5	90.Z ¹³	59.5
Storm Drain System	6,500 ^[c]	62,182 ^[c]	113,372 ^[c]	291 ^[b]	101 ^[b]	[d]
Pump Stations	8	12	14	0.009 ^[e]	16.8 ^[e]	0.9 ^[e]

Table 74. Catch Basin, Storm Drain, Pump Station, and Detention Basin Cleaning (County)

[a] The amount removed increased between 2016-2017 and 2017-2018 due to the use of a vactor truck, which had not previously been used due to budget constraints.

[b] Two quantities were reported, in tons (from the Road Maintenance Division) and in cubic feet (from the Utility Maintenance Division). The quantity in cubic feet was converted to tons using 27 cubic feet/cubic yard, 202 gallons/cubic yards, 2.5 pounds/gallon, and 2,000 lbs/ton.

[c] Length of channel/pipe cleaned in linear feet

[d] The amount of material removed from the storm drain system is included in the amount removed from catch basins.

[e] This amount was originally reported in cubic feet and was converted as described in footnote [a].

The County tracks the number of catch basins stenciled with the message "No Dumping – Flows to Delta." These stencils are intended to inform the public and prevent illegal dumping and discharges to the storm drain. The number of catch basins stenciled in 2016-2019 for the County is shown in **Table 75**.

	Total Number		
Item	2016-2017	2017-2018	2018-2019
Catch Basins	1,471	1,696	1,696
Catch Basins Stenciled to Date	1,455	1,696 ^[a]	1,696
Catch Basins Stenciled/Re-Stenciled by Volunteers	2,034	[b]	0
Catch Basins Stenciled/Re-Stenciled by Municipal/Contract Staff	0	0	0

Table 75. Number of Catch Basins Stenciled (County)

[a] The total number of catch basins in the inventory was updated in 2017-2018. The number of catch basins stenciled to date was initially reported as 1,455 in the 2017-2018 Annual Report; however, as reported in the City of Stockton and County of San Joaquin Settlement Agreement Fiscal Year 2017-2018 Annual Report (October 31, 2018), as of June 30, 2018, the County labeled 1,696 catch basins within the County's portions of the SUA with a storm drain message

The County requires large special events (as well as large venues) to address trash and debris removal, including containerization and street sweeping as appropriate. The number of special events required to obtain special use permits and comply with special use provisions to address trash and debris in 2016-2019 for the County are shown in **Table 76**.

Table 76. Large Events Required to Comply (County)

	Total Number		
ltem	2016-2017	2017-2018	2018-2019
Special Use Permits and Provisions	NT	1,507 ^[a]	1,726 ^[a]

NT: Not Tracked

[a] These include parks special events held within the County, which require special use permits.

5.2.3.4 Street Cleaning and Maintenance (MO6)

Summaries of street sweeping activities and the amount of material removed by street sweeping and green waste collection activities performed in 2016-2019 for the County are shown in **Table** 77.

Table 77.	Street Sweeping	and Green Was	ste Collection	Activities (County)
				· · · · · · · · · · · · · · · · · · ·

	Amount			
Metric	2016-2017	2017-2018	2018-2019	
Total miles swept	9,775	9,775	9,150	
Total amount of debris removed (tons)	1,692	1,584	1,520	
Total amount of green waste collected (tons)	1,800	1,750	1,389	

5.2.3.5 Training (MO8)

The trainings associated with the Municipal Operations Program attended by County staff between 2016-2019 are summarized in **Table 78**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
5/18/2017	Stormwater Regional Training	2	Engineer IV Management Analyst II	Water Resources
6/28/2018	Module 2: Municipal Operations	51	NT	Road & Traffic Maintenance
5/16/2019	San Joaquin Valley Stormwater Quality Partnership 2019 Regional Training	2	Engineering Assistant Management Analyst II	Water Resources

Table 78. Municipal Operations Program Trainings Attended (County)

NT: Not Tracked

5.2.4 Industrial and Commercial (IC)

The purpose of the Industrial and Commercial Program Element is to effectively prohibit unauthorized non-stormwater discharges and reduce pollutants in stormwater runoff from industrial and commercial facilities to the MEP. The program for industrial and commercial facilities is accomplished by tracking, inspecting, providing outreach, and ensuring compliance at industrial and commercial facilities identified as potentially significant sources of pollutants in stormwater.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.³⁸ The Industrial and Commercial Program Control Measures are summarized in **Table 79**.

IC	Control Measure	Section 5
IC1	Facility Inventory	~
IC2	Prioritization and Inspection	~
IC3	Industrial/Commercial Outreach	~
IC4	Enforcement	~
IC5	Training	~
IC6	Effectiveness Assessment	

Table 79. Industrial and Commercial Program Control Measures

All PWQCs are addressed by the Industrial and Commercial Program Element. The Industrial and Commercial Program Element includes control measures designed to prohibit unauthorized non-stormwater discharges and reduce pollutants in stormwater runoff from industrial and commercial facilities. These include prioritization and inspection of industrial and commercial facilities and implementation of BMPs through the distribution of BMP fact sheets during inspections.

The implementation of this Program Element during 2016-2019 is summarized below.

5.2.4.1 Facility Inventory and Prioritization and Inspection (IC1 and IC2)

The County prioritizes all industrial facilities, and commercial facilities that may be significant sources of pollutants, as high priority and inspects each facility twice during the five-year permit term. The inspection results for industrial facilities in 2016-2019 for the County are shown in **Table 80**.

³⁸ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

Table 80. Summary of Industrial	Inspections	(County)
---------------------------------	-------------	----------

	Total Number		
Metric	2016-2017	2017-2018	2018-2019
Industrial facilities in current inventory	17	14 ^[a]	14
Facilities prioritized as high	17	14	14
Facilities inspected during the reporting period ^[b]	5	7	8
Facilities with SWPPPs on site	5	7	8
Facilities in compliance with stormwater control requirements	5	7	8
Facilities requiring follow-up inspections	0	0	0

[a] One facility submitted a Notice of Termination in 2016-2017 due to lack of exposure to stormwater and was removed from the inventory in 2017-2018. Two facilities were determined to discharge to the City's MS4 and are now part of the City's industrial inventory.

[b] The County maintains an annual presence in the field by inspecting a percentage of industrial facilities annually, resulting in all facilities being inspected at least twice during a five-year permit term.

The inspection results for commercial facilities in 2016-2019 for the County are shown in **Table 81**.

Table 81.	Summary	of Commercial	Inspections	(County)
-----------	---------	---------------	-------------	----------

	Total Number			
Metric	2016-2017	2017-2018	2018-2019	
Commercial facilities in current inventory	120	117	111	
Facilities prioritized as high and requiring inspection ^[a]	60	62	58	
Facilities inspected during the reporting period	5	41	48	
Facilities adequately implementing BMPs	5	41	48	
Facilities in compliance with stormwater control requirements	5	41	48	
Facilities requiring follow-up inspections	0	0	0	

[a] The total number of commercial facilities requiring inspection is estimated at about half of all inventoried facilities each year, to project an annual presence in the field. All facilities are inspected at least twice during a five-year permit term.

5.2.4.2 Industrial/Commercial Outreach (IC3)

In order to assist the industrial and commercial facilities in selecting and implementing the appropriate types of BMPs, the County developed BMP Fact Sheets for the high priority industrial and commercial businesses. The BMP Fact Sheets are distributed during the inspections and made available on the County's website.³⁹

³⁹ <u>http://sjcleanwater.org/Commercial%20Business.htm</u>

Summaries of the BMP Fact Sheets distributed during industrial and commercial inspections in 2016-2019 for the County are shown in **Table 82**.

	Total Number Distributed				
Category	2016-2017 2017-2018 2018-2019				
Industrial					
Industrial Facilities	5	7	14		
Commercial					
Automotive-Related Facilities	0	11	16		
Restaurants/Food Service Establishments	5	28	21		
Total	10	46	51		

 Table 82. BMP Fact Sheets Distributed During Industrial/Commercial Inspections (County)

5.2.4.3 Enforcement (IC4)

The Enforcement Control Measure outlines the progressive levels of enforcement applied to industrial and commercial facilities that are out of compliance with local ordinances and establishes the protocol for referring apparent violations of facilities subject to the Industrial General Permit to the Regional Water Board.

No enforcement actions were taken by the County between 2016-2019.

5.2.4.4 Training (IC5)

The trainings associated with the Industrial and Commercial Program attended by County staff between 2016-2019 are summarized in **Table 83**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
5/18/2017	Stormwater Regional Training	2	Engineer IV Management Analyst II	Water Resources
5/16/2019	San Joaquin Valley Stormwater Quality Partnership 2019 Regional Training	2	Engineering Assistant Management Analyst II	Water Resources

Table 83. Industrial and Commercial Program Trainings Attended (County)

5.2.5 Construction (CO)

During construction projects, a number of activities may generate or mobilize pollutants. The purpose of the Construction Program Element is to coordinate County programs and resources to effectively reduce pollutants in runoff from construction sites during all construction phases.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.⁴⁰ The Construction Program Control Measures are summarized in **Table 84**.

со	Control Measure	Section 5	
CO1	Municipal Code for Construction Sites		
CO2	Plan Review and Approval Process		
CO3	Construction Projects Inventory		
CO4	Construction Outreach	\checkmark	
CO5	Construction Site Inspections & BMP Implementation	\checkmark	
CO6	Enforcement	\checkmark	
C07	Training	\checkmark	
CO8	Effectiveness Assessment		

 Table 84. Construction Program Control Measures (County)

Dissolved oxygen, methylmercury, and trash are addressed by the Construction Program Element. The Construction Program Element includes control measures to effectively reduce pollutants in runoff from construction sites during all construction phases, including inspections of construction sites and implementation of BMPs through the distribution of BMP fact sheets during inspections.

The implementation of this Program Element during 2016-2019 is summarized below.

5.2.5.1 Construction Outreach (CO4)

The County had no active construction sites greater than or equal to one acre in size between 2016-2019 and, therefore, did not distribute outreach materials during construction site inspections.

5.2.5.2 Construction Site Inspections & BMP Implementation (CO5)

The County inspects all construction sites greater than or equal to one (1) acre during the wet and dry seasons. The inspection program ensures that the specific minimum requirements are effectively implemented at construction sites. The County had no active constructions sites within the Phase I area greater than or equal to one acre in size between 2016-2019.

⁴⁰ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

5.2.5.3 Enforcement (CO6)

The Enforcement Control Measure outlines the progressive levels of enforcement applied to construction sites that are out of compliance with local ordinances and establishes the protocol for referring apparent violations of construction sites subject to the General Construction Permit to the Regional Water Board. The progressive enforcement and referral policy, as well as the accompanying legal authority, is an important tool for ensuring a fair and equitable approach to bringing contractors and developers into compliance with the County Code and ordinance requirements.

The County had no eligible construction sites during 2016-2019; therefore, no enforcement actions were taken.

5.2.5.4 Training (CO7)

The trainings associated with the Construction Program attended by County staff between 2016-2019 are summarized in **Table 85**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
5/18/2017	Stormwater Regional Training	2	Engineer IV Management Analyst II	Water Resources
9/26/2018	The Future of the Phase II MS4 Permit	4	Engineer V, Engineer I, Management Analyst 2	Water Resources
9/26/2018	Reviewing Post Construction Standards & Plans	4	Engineer V, Engineer I, Management Analyst 2	Water Resources
5/16/2019	San Joaquin Valley Stormwater Quality Partnership 2019 Regional Training	2	Engineering Assistant Management Analyst II	Water Resources
6/28/2019	Module 3 Construction Erosion & Sediment Control Plan Review and Inspection	15	Engineer I, II, & III Engineering Aide Bridge Division Manager Administrative Assistant	Field, Bridge, Community Infrastructure, Water Resources

Table 85. Construction Program Trainings Attended (County)

5.2.6 Planning and Land Development (LD)

The addition of impervious areas for homes, industrial and commercial businesses, parking lots, streets and roads may increase the amount of stormwater runoff, as well as the potential for pollution. The Planning and Land Development Program Element ensures that the impacts on stormwater quality from new development and redevelopment are limited through implementation of Site Design Controls, Source Controls, Volume Reduction Measures, and Treatment Controls. The general strategy for development is to avoid, minimize, and mitigate (in that order) the potential adverse impacts to stormwater. The potential for long-term stormwater impacts from development is also reduced by requiring ongoing operation and maintenance of post-construction treatment controls selected for a site.

The County has developed and is implementing Control Measures and accompanying performance standards specific to this Program Element.⁴¹ The Planning and Land Development Program Control Measures are summarized in **Table 86**.

LD	Control Measure	Section 5
LD1	Incorporation of Water Quality Protection Principles into City Procedures and Policies	
LD2	New Development Standards	
LD3	Plan Review Sign-Off	~
LD4	Maintenance Agreement and Transfer	~
LD5	Training	~
LD6	Effectiveness Assessment	

Table 86. Planning and Land Development Program Control Measures (County)

All PWQCs are addressed by the Planning and Land Development Program Element. The Planning and Land Development Program Element includes control measures to ensure that the impact on stormwater quality from new development and redevelopment is limited. The general strategy for development is to avoid, minimize, and mitigate (in that order) the potential adverse impacts to stormwater.

The implementation of this Program Element during 2016-2019 is summarized below.

5.2.6.1 Plan Review Sign-off (LD3)

The County conducts comprehensive reviews of development plans to ensure that stormwater controls minimize water quality impacts by PWQCs. The priority projects reviewed by the County in 2016-2019 are summarized in **Table 87**.

96

⁴¹ These Control Measures are based on the 2009 SWMP (and modifications thereto) and the NOI Work Plan submitted to and approved by the Regional Water Board as a part of the NOI application package and may change when the revised SWMP is developed.

	Number Reviewed			
Metric	2016-2017	2017-2018	2018-2019	
Project Plans Reviewed	2	2	1	
Acres Covered by Approved Priority Projects ^[a]	1.2	3.88	2.88	
Priority Project Category ^[b]				
Significant Redevelopment	0	0	0	
Commercial Developments (<u>></u> 100,000 SF)	0	0	0	
Commercial Developments (<u>></u> 5,000 SF)	2	0	0	
Automotive Repair Shops	0	1	0	
Retail Gasoline Outlets	0	1	1	
Restaurants	0	0	0	
Parking Lots (<u>> 5</u> ,000 SF or 25 spaces)	0	0	0	
Streets and Roads (>1 acre paved surface)	0	0	0	
Home Subdivisions (> 10 units)	0	0	0	
Total Projects	2	2	1	

Table 87. Project Plans and Priority Projects Reviewed (County)

[a] As of June 30 of each fiscal year.

[b] The Development Standards apply to all Priority Projects or phases of Priority Projects at the date of adoption unless the projects already had approval by the City or County Engineer, a permit for development or construction or an approved tentative map prior to the Development Standards date of adoption.

The type and number of post-construction BMPs (control measures) implemented as part of the priority projects that were approved by the County in 2016-2019 are shown in **Table 88**.

Table 88.	Post-Construction	BMPs Im	plemented in	n Priority F	Projects	(County)
				· · · · · · · · · · · · · · · · · · ·		(j)

	Total Number Approved				
Control measure Type	2016-2017	2017-2018	2018-2019		
Site Design Controls					
G-1: Conserve Natural Areas	1	0	0		
G-2: Protect Slopes and Channels	0	0	0		
G-3: Minimize Soil Compaction	0	0	0		
G-4: Minimize Impervious Area	1	0	0		
Total Site Design Controls	2	0	0		
Source Controls					
S-1: Storm Drain Message and Signage	1	0	0		
S-2: Outdoor Materials Storage Area Design	0	0	0		
S-3: Outdoor Trash Storage and Waste Handling Area Design	0	1	0		
S-4: Outdoor Loading/Unloading Dock Area Design	0	0	0		
S-5: Outdoor Repair/Maintenance Bay Design	0	0	0		
S-6: Outdoor Vehicle/Equipment/Accessory Wash Area Design	0	0	0		
S-7: Fuel Area Design	0	1	0		

	Total Number Approved			
Control measure Type	2016-2017	2017-2018	2018-2019	
Total Source Controls	1	2	0	
Volume Reduction Measures				
V-1: Rain Garden	0	0	0	
V-2: Rain Barrel/ Cistern	0	0	0	
V-3: Vegetated Roof	0	0	0	
V-4: Interception Trees	0	0	0	
V-5: Grassy Channel	0	0	0	
V-6: Vegetated Buffer Strip	0	0	0	
Total Volume Reduction Measures	0	0	0	
Treatment Control Measures				
L-1: Bioretention	0	9	1	
L-2: Stormwater Planter	0	0	0	
L-3: Tree-well Filter	0	0	0	
L-4: Infiltration Basin	0	1	0	
L-5: Infiltration Trench	0	0	0	
L-6: Porous Pavement Filter	0	0	0	
L-7: Vegetated (Dry) Swale	0	0	0	
L-8: Grassy Swale	0	0	0	
L-9: Grassy Filter Strip	0	0	0	
C-1: Constructed Wetland	0	0	0	
C-2: Extended Detention Basin	1	0	0	
C-3: Wet Pond	0	0	0	
C-4: Proprietary Treatment Controls	0	0	0	
Total Treatment Control Measures	1	10	1	

5.2.6.2 Maintenance Agreement and Transfer (LD4)

The County performs post-construction BMP maintenance oversight to ensure that postconstruction BMPs continue to function correctly and minimize water quality impacts. The number of completed priority projects with post-construction BMPs, as well as the number of inspections conducted and enforcement actions taken in 2016-2019 due to improper maintenance, are shown in **Table 89**.

Table 89.	Post-Construction	BMP Inspections	and Enforcement	(County)
				(j)

	Total Number			
Metric	2016-2017	2017-2018	2018-2019	
Completed priority projects with post- construction BMPs	4	1	0	
Inspections conducted	1	1	0	
Enforcement actions taken due to improper maintenance	0	0	0	

5.2.6.3 Training (LD5)

The trainings associated with the Planning and Land Development Program attended by County staff between 2016-2019 are summarized in **Table 90**.

Date of Training	Title of Training Module	Number of Attendees	Staff Positions Trained	Trainee Departments or Divisions
5/27/2018	Phase II MS4 Regional Training: Landscape Design and Watershed Protection	7	Engineering Services Manager Management Analyst III Engineer IV Engineering Assistant III Management Analyst II Engineering Assistant I Administrative Assistant	Public Services, Community Infrastructure & Water Resources

Table 90. Planning and Land Development Program Trainings Attended (County)

This page intentionally left blank for printing purposes

6 Effectiveness Assessment: Short-Term

The Mid-Term Report is based on three years of data collected between 2016-2017 and 2018-2019 (Section 5). However, the short-term Effectiveness Assessment included in this Mid-Term Report is based on five years of data collected between 2014-2015 and 2018-2019.⁴² This timeframe has been selected for the short-term effectiveness assessment to provide a sufficient amount of data that are most representative of current conditions, as it is challenging to conduct a meaningful assessment with insufficient data. Effective assessments performed prior to 2016-2017 typically contained data from an extended timeframe (i.e., beginning in 2003-2004) to allow identification of longer-term trends, if any, over time.

The Region-wide Permit (Provision V.E.5) states:

When reporting on the effectiveness of its Storm Water Management Program, the Permittee shall:

- *i.* Identify the management questions and metrics that were used for the assessment;
- *ii.* Identify the direct and/or indirect measurements that were used to track the effectiveness of the Storm Water Management Program as well as the outcome levels at which the assessment is occurring; and,
- *iii.* Track the progress of the SWMP towards achieving the milestones, strategies, and activities aimed at improving water quality.

Since the revised SWMP is currently in development, the management questions required by the Region-wide Permit have not yet been identified. Thus, the short-term Effectiveness Assessment was performed using an approach similar to that used to develop the most recent Effectiveness Assessment (presented in the City and County's individual 2015-2016 Annual Reports).

The Effectiveness Assessment was modeled after the methodology described within the CASQA document, *A Strategic Approach to Planning for and Assessing the Effectiveness of Stormwater Programs* (February 2015). This methodology is focused on the impact of the stormwater program. This assessment approach is intended to improve the program's effectiveness at reducing discharges of the identified PWQCs (dissolved oxygen (i.e., oxygen-demanding substances), indicator bacteria, methylmercury, and trash), thereby protecting water quality.

The CASQA Effectiveness Assessment approach⁴³ utilizes a general model that aggregates three primary components from six outcome levels and associated, general outcome types. The three primary components are:

• <u>Sources and Impacts (Outcome Levels 4-6)</u> – This component addresses the generation, transport, and fate of urban runoff pollutants. It includes sources (e.g., sites, facilities, areas), stormwater conveyance systems, and the water bodies that ultimately receive the source discharges (receiving waters). This component is typically assessed on a long-term basis.

⁴² This date range references the fiscal years 2014-2015 through 2018-2019, or July 1, 2014 to June 30, 2019.

⁴³ See 2015 CASQA Guidance Document, Section 2.0: Stormwater Management Approach.

- <u>Target Audiences (Outcome Levels 2-3)</u> This component focuses on understanding the behaviors of the people responsible for source contributions by exploring the factors that determine existing behavioral patterns and looking for ways to replace polluting behaviors with non-polluting behaviors. This component is typically assessed on a short-and/or long-term basis.
- <u>Stormwater Programs (Outcome Level 1)</u> Stormwater programs are the road map for the improvements that managers wish to attain in receiving waters. Their immediate purpose is to describe programs that will facilitate changes in the behaviors of key target audiences. This component is typically assessed on a short-term basis.

The six categories of outcome levels establish a logical and consistent organizational scheme for assessing and relating individual outcomes. This Effectiveness Assessment will focus on Outcome Levels 2 through 4 (OL2, OL3, and OL4), since Outcome Level 1 has been addressed, in part, by reporting the implementation of programmatic activities (**Section 5**), and Outcome Levels 5 and 6 are determined through long-term effectiveness assessments.

The Short-Term Effectiveness Assessment is presented by Program Element in the following subsections:

- Section 6.1 City Effectiveness Assessment
 - o Section 6.1.1 Illicit Discharge Program (ID) Effectiveness Assessment
 - o Section 6.1.2 Public Outreach Program (PO) Effectiveness Assessment
 - o Section 6.1.3 Municipal Operations Program (MO) Effectiveness Assessment
 - Section 6.1.4 Industrial and Commercial Program (IC) Effectiveness Assessment
 - Section 6.1.5 Construction Program (CO) Effectiveness Assessment
 - Section 6.1.6 Planning and Land Development Program (LD) Effectiveness Assessment
- Section 6.2 County Effectiveness Assessment
 - Section 6.2.1 Illicit Discharge Program (ID) Effectiveness Assessment
 - Section 6.2.2 Public Outreach Program (PO) Effectiveness Assessment
 - Section 6.2.3 Municipal Operations Program (MO) Effectiveness Assessment
 - o Section 6.2.4 Industrial and Commercial Program (IC) Effectiveness Assessment
 - o Section 6.2.5 Construction Program (CO) Effectiveness Assessment
 - Section 6.2.6 Planning and Land Development Program (LD) Effectiveness Assessment

6.1 CITY EFFECTIVENESS ASSESSMENT

6.1.1 Illicit Discharge Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Illicit Discharge Program Control Measures is assessed below.

6.1.1.1 Detection of Illicit Discharges and Illegal Connections (ID1)

<u>Public Reporting</u> - The public is aware of the available reporting phone number and website and has provided notifications/complaints through these systems0. **[OL2]**

The City received an increasing number of notifications between 2014-2015 and 2017-2018. The number then decreased in 2018-2019; however, the number of notifications or complaints varies from year to year depending on when and where illicit discharges occur (**Figure 10**).

Figure 10. ID1 – Number of IDDE Complaints from Phone/AskStockton (City)

<u>Field Crew Inspections</u> – With few exceptions, the awareness of field inspectors regarding what constitutes a problematic water pollution incident, based on the percent of potential illicit discharges identified and verified in the field, has been high in recent years. **[OL2]**

The percent of illicit discharges verified by City field crew inspections rose from 86% to 93% between 2015-2016 and 2018-2019 (**Figure 11**).

Figure 11. ID1 – Field Crew Inspections (Percent Verified) (City)

6.1.1.2 Investigation/Inspection and Follow Up (ID3)

<u>Water Pollution Complaints</u> – As field staff verify, characterize, and document illicit discharges, they are demonstrating awareness of the different types of materials involved, as indicated by the high percentage of illicit discharges identified using a specific waste category instead of Miscellaneous or Unidentified. **[OL2]**

City field crews have maintained high identification rates, with a slightly reduced rate in 2018-2019 due to staffing changes (**Figure 12**).

Figure 12. ID3 – Water Pollution Complaints: Percent Identified Materials (City)

6.1.2 Public Outreach Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Public Outreach Program Control Measures is assessed below.

6.1.2.1 Public Participation (PO1)

<u>Stream Cleanup Events</u> – The public is aware of the education campaign and community events and is involved in the stormwater program. Materials are being removed from the local creeks and streams, thus reducing the amount of materials that may adversely impact the local waterways. **[OL2, OL4]**

The City and County organized an average of 875 volunteers per year at an average of 14 sites over the past five years, and removed 56 tons of trash/debris (Figure 13 and Figure 14).

Figure 13. PO1 – Community Stream Clean Up Events

Figure 14. PO1 – Stream Clean Up Trash Removal

<u>Used Oil and HHW Programs</u> – The City and County have collected used oil and filters, mercury-containing products, and other household hazardous waste from their residents for proper disposal, increasing awareness and reducing the potential load of pollutants that could enter the storm drain system. Additionally, an increase in waste collected represents changing behaviors on the part of residents. **[OL2, OL3, OL4]**

Over the last five years, 1,744,518 gallons of used oil and 596,295 used oil filters (**Figure 15**) and 1,408 pounds of mercury (**Figure 16**) have been collected through the HHW Program. The amount of mercury collected annually has increased over the last five years.

Figure 15. PO1 – HHW Used Oil & Filters Collected

Figure 16. PO1 – HHW Mercury Collected

The City and County are raising awareness about HHW collection services and are increasing the amount of HHW that is being disposed of properly, thus reducing the potential load of pollutants that could enter the storm drain system. [OL2, OL3, OL4]

- Residents have properly disposed of HHW through the permanent collection facility. Since 2014-2015, these efforts have resulted in approximately 4,759,264 pounds of hazardous waste being collected and disposed of properly.
- On average, the amount of HHW properly disposed has increased by 114% between 2014-2015 and 2018-2019. This proper disposal of HHW ensures that potential impacts to the storm drain or receiving waters are prevented (**Figure 17**).

Total Hazardous Waste Collected (pounds)

Figure 17. PO1 – Total HHW Collected

6.1.3 Municipal Operations Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Municipal Operations Program Control Measures is assessed below.

6.1.3.1 Sanitary Sewer Maintenance & Overflow and Spill Response (MO1)

<u>Implement SSO Emergency Response Plan</u> – In general, a downward trend has been observed in the total annual number of SSOs and those reaching a storm drain or receiving waters, indicating that implementation of the SSOERP has been effective. **[OL4]**

Since 2014-2015, 539 SSOs have occurred (along 1,500 total miles of pipe) and were responded to by the City, representing 36 SSOs per 100 miles of sanitary sewer pipeline. Of the 539 spills within the City, 109 (20%) reached the storm drain system and no more than 19 (3.5%) reached a receiving water, or 4% of the total SSOs per year (**Figure 18**). Conversely, an average of 80% of SSOs did not reach the storm drain, and an average of 96% did not reach a receiving water (**Figure 19**).

Figure 18. MO1 – Sanitary Sewer Overflows (City)

Figure 19. MO1 – Percent Sanitary Sewer Overflows Not Reaching Storm Drain or Receiving Waters (City)

6.1.3.2 Landscape and Pest Management (MO4)

<u>Fertilizer Application</u> – Fertilizer application data for prior years 2014-2015 and 2015-2016 may be incomplete. The City's nitrogen fertilizer use decreased between 2016-2017 and 2017-2018, with an average of 7,082 pounds per year applied between 2016-2019 (**Figure 20**). City nitrogen fertilizer application averaged six pounds per acre between 2014-2015 and 2018-2019. The City's rate of phosphorus fertilizer application remained at approximately half a pound per acre during that time period, with the exception of 2016-2017, when an increased amount was used (**Figure 21**).

Figure 20. MO4 – Fertilizer Application (City)

Figure 21. MO4 – Fertilizer Application per Acre (City)

6.1.3.3 Storm Drain System Maintenance (MO5)

<u>Catch Basin Maintenance</u> – The amount of material removed from catch basins⁴⁴ shows that the City is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

The City removed 98 tons of material from catch basins between 2014-2015 and 2018-2019, an average of 20 tons per year (**Figure 22**).

Figure 22. MO5 – Catch Basin Maintenance (City)

⁴⁴ The total number of catch basins includes all high priority catch basins and low priority manhole/catch basin combinations and BMP catch basin combinations.

<u>Pump Station Maintenance</u> - The amount of material removed from pump stations shows that the City is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

The City removed 263 tons of material from pump stations between 2014-2015 and 2018-2019, an average of 53 tons per year (**Figure 23**).

Figure 23. MO5 – Pump Station Maintenance (City)

<u>Special Use Permits/Provisions</u> - The City is requiring large events to address trash and debris removal by applying for and complying with special use permits. The amount of material (trash) collected from special (large) events shows the effectiveness of the program in diverting waste from stormwater. [**OL4**]

A total of 2,950 tons of waste and 36 tons of recycling has been diverted from stormwater through special use permits between 2014-2015 and 2018-2019 (Figure 24).

Figure 24. MO5 – Special Use Provisions

6.1.3.4 Street Cleaning and Maintenance (MO6)

The amount of material removed through street sweeping activities shows that the City is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

The City has collected 33,948 tons of debris and 294,107 tons of green waste between 2014-2015 and 2018-2019 (**Figure 25**).

Figure 25. MO6 – Street Sweeping (City)

6.1.4 Industrial and Commercial Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Industrial and Commercial Program Control Measures is assessed below.

6.1.4.1 Facility Inventory (IC1) and Prioritization and Inspection (IC2)

<u>Industrial and Commercial Inspections</u> – The City is proactively inspecting industrial and commercial facilities, providing outreach to increase awareness of the BMPs that should be implemented to protect stormwater quality, and determining whether these facilities are adequately implementing BMPs. **[OL2]**

In 2016-2017, the City updated its industrial facility inventory and revised its inspection criteria and reporting methods. Therefore, only inspection data collected between 2017-2019 are comparable (i.e., data prior to 2017-2018 are not shown). While the inspection criteria were being updated in 2016-2017, the City did not track the results of industrial inspections performed. The City inspected an average of 63 high priority industrial facilities during 2017-2018 and 2018-2019, in order to inspect all facilities at least once during the permit term. Approximately 29% of the inspected facilities required follow-up inspections between 2017-2019 (**Figure 26**).

Figure 26. IC1 & IC2 – Industrial Facilities and Inspections (City)

As the City intends to inspect all industrial facilities within the permit term, the same facilities are not inspected from year to year. Therefore, the inspection results of one year are not comparable to the next, as the facilities inspected were different. Since the new inspection criteria were developed in 2016-2017, 82% of industrial facilities have had SWPPPs onsite during inspections, 54% have had adequate BMPs at initial inspections, and 40% have been in general compliance with stormwater requirements (**Figure 27**).

Figure 27. IC2 – Industrial Facility Inspection Results (City)

In 2016-2017, the City updated its industrial facility inventory and revised its inspection criteria and reporting methods. Therefore, only inspection data collected between 2017-2019 is comparable (i.e., data prior to 2017-2018 are not shown). Between 2016-2017 and 2018-2019, the City was adding facilities to its inventory annually, as they were verified and inspected; thus, the number of facilities reported each year represents only a portion of the total number of facilities actually within the City's jurisdiction. The City inspected an average of 351 commercial facilities between 2016-2017 and 2018-2019, in order to inspect each facility once every two years. (**Figure 28**).

Figure 28. IC1 & IC2 – Commercial Facilities and Inspections (City)

The City inspects each commercial facility once every two years. Therefore, the inspection results are grouped into two-year periods. Since the new inspection criteria were developed in 2016-2017, very few inspections were performed during that fiscal year, so it was assumed that the time period 2016-2019 represents two years' worth of commercial facility inspections. A total of 25% of commercial facilities had adequate BMPs at initial inspections and 33% were in general compliance with stormwater requirements during the reporting period (**Figure 29**).

Figure 29. IC2 – Commercial Facility Inspection Results (City)
6.1.5 Construction Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Construction Program Control Measures is assessed below.

6.1.5.1 Construction Site Inspections & BMP Implementation (CO5)

The City continues to work to educate construction site owners and operators as needed so that they are aware of the BMPs that are required to be implemented and maintained. **[OL2]**

Since 2015-2016, the City has been increasing the number of follow-up inspections conducted per site to inform construction site owners and operators of the need to implement sediment and erosion control BMPs (**Figure 30**).

% follow-up inspections/site

Figure 30. CO5 – Percent Follow-up Inspections (City)

6.1.5.2 Training (CO7)

The pre- and post-training surveys conducted after Construction Program training activities indicate that staff have been effectively trained and demonstrated increased understanding of the concepts presented. **[OL3]**

The City conducted a pre- and post-training survey during a staff training held in 2016-2017. Nineteen participants achieved an average of 60% correct on the pre-training survey, and 83% correct on the post-training survey, a 24% increase in understanding (**Figure 31**).

Figure 31. CO7 – Pre- and Post-Training Survey Results (City)

6.1.6 Planning and Land Development Program Effectiveness Assessment

The effectiveness of the City's programmatic activities associated with the Planning and Land Development Program Control Measures is assessed below.

6.1.6.1 Maintenance Agreement and Transfer (LD4)

The City programs have been requiring compliance with the SWQCCP; the owners of completed priority projects with post-construction BMPs installed have executed the appropriate maintenance agreements with the City. **[OL2]**

Since 2016-2017, all completed priority projects with post-construction BMPs in the City have executed maintenance agreements (**Figure 32**).

Figure 32. LD4 – Post-Construction BMPs (City)

6.2 COUNTY EFFECTIVENESS ASSESSMENT

6.2.1 Illicit Discharge Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Illicit Discharge Program Control Measures is assessed below.

6.2.1.1 Detection of Illicit Discharges and Illegal Connections (ID1)

<u>Public Reporting</u> - The public is aware of the available reporting phone number and website and has provided notifications/complaints through these systems. **[OL2]**

The County received hotline calls regarding illicit discharges between 2014-2015 and 2018-2019 (**Figure 33**). The number of calls varied from year to year.

of Hotline Calls (Water Pollution Complaints)

Figure 33. ID1 – Number of IDDE Complaints from Hotline (County)

<u>Field Crew Inspections</u> – With few exceptions, the awareness of field inspectors regarding what constitutes a problematic water pollution incident, based on the percent of potential illicit discharges identified and verified in the field, has been high in recent years. **[OL2]**

The percent of illicit discharges verified by County field crew inspections was 100% in 2015-2016 and has been high during the last two years (**Figure 34**).

Figure 34. ID1 – Field Crew Inspections (Percent Verified) (County)

6.2.1.2 Investigation/Inspection and Follow Up (ID3)

<u>Water Pollution Complaints</u> – As field staff verify, characterize, and document illicit discharges, they are demonstrating awareness of the different types of materials involved, as indicated by the high percentage of illicit discharges identified using a specific waste category instead of Miscellaneous or Unidentified. **[OL2]**

The County began identifying the types of materials present in illicit discharges in 2017-2018, and thus far has identified specific waste types of each illicit discharge (**Figure 35**).

Figure 35. ID3 – Water Pollution Complaints: Percent Identified Materials (County)

6.2.2 Public Outreach Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Public Outreach Program Control Measures is assessed below.

6.2.2.1 Public Participation (PO1)

<u>Stream Cleanup Events</u> – The public is aware of the education campaign and community events and is involved in the stormwater program. Materials are being removed from the local creeks and streams, thus reducing the amount of materials that may adversely impact the local waterways. **[OL2, OL4]**

The City and County organized an average of 875 volunteers per year at an average of 14 sites over the past five years, and removed 56 tons of trash/debris (**Figure 36** and **Figure 37**).

Figure 36. PO1 – Community Stream Clean Up Events

Figure 37. PO1 – Stream Clean Up Trash Removal

<u>Used Oil and HHW Programs</u> – The City and County have collected used oil and filters, mercury-containing products, and other household hazardous waste from their residents for proper disposal, increasing awareness and reducing the potential load of pollutants that could enter the storm drain system. Additionally, an increase in waste collected represents changing behaviors on the part of residents. **[OL2, OL3, OL4]**

Over the last five years, 1,744,518 gallons of used oil and 596,295 used oil filters (**Figure 38**) and 1,408 pounds of mercury (**Figure 39**) have been collected through the HHW Program. The amount of mercury collected annually has increased over the last five years.

Figure 38. PO1 – HHW Used Oil & Filters Collected

Figure 39. PO1 – HHW Mercury Collected

The City and County are raising awareness about HHW collection services and are increasing the amount of HHW that is being disposed of properly, thus reducing the potential load of pollutants that could enter the storm drain system. [OL2, OL3, OL4]

- Residents have properly disposed of HHW through the permanent collection facility. Since 2014-2015, these efforts have resulted in approximately 4,759,264 pounds of hazardous waste being collected and disposed of properly.
- On average, the amount of HHW properly disposed has increased by 114% between 2014-2015 and 2018-2019. This proper disposal of HHW ensures that potential impacts to the storm drain or receiving waters are prevented (**Figure 40**).

Total Hazardous Waste Collected (pounds)

Figure 40. PO1 – Total HHW Collected

6.2.3 Municipal Operations Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Municipal Operations Program Control Measures is assessed below.

6.2.3.1 Sanitary Sewer Maintenance & Overflow and Spill Response (MO1)

<u>Implement SSO Emergency Response Plan</u> – In general, a downward trend has been observed in the total annual number of SSOs and those reaching a storm drain or receiving waters, indicating that implementation of the SSOERP has been effective. **[OL4]**

Since 2014-2015, 25 SSOs have occurred and were responded to by the County. Of the 25 spills, three (3) reached the storm drain system, and none reached a receiving water. (**Figure 41**).

Figure 41. MO1 – Sanitary Sewer Overflows (County)

6.2.3.2 Landscape and Pest Management (MO4)

<u>Fertilizer Application</u> – The County has reduced the amount of fertilizer applied on municipally owned and/or operated areas, thus reducing the potential load of pollutants (i.e., oxygen-demanding substances) that could enter the storm drain system. [OL2, OL3, OL4]

The County's nitrogen fertilizer use decreased between 2014-2015 and 2015-2016 (**Figure 42**), as did the rate of fertilizer application per acre (**Figure 43**). The County has not applied fertilizer since 2015-2016.

Figure 42. MO4 – Fertilizer Application (County)

Figure 43. MO4 – Fertilizer Application per Acre (County)

6.2.3.3 Storm Drain System Maintenance (MO5)

<u>Catch Basin Maintenance</u> – The amount of material removed from catch basins shows that the County is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

The County removed 166 tons of material from catch basins between 2014-2015 and 2018-2019, an average of 33 tons per year (**Figure 44**).

Note: The amount of material removed increased between 2016-2017 and 2017-2018 due to the use of a vactor truck, which had not been previously used due to budget constraints.

Figure 44. MO5 – Catch Basin Maintenance (County)

<u>Pump Station Maintenance</u> - The amount of material removed from pump stations shows that the County is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

Material Removed from Pumps (tons)*

Note: The amount of material removed increased between 2016-2017 and 2017-2018 due to the use of a vactor truck, which had not been previously used due to budget constraints.

*Data were reported by the Utility Maintenance Division in cubic feet. The quantity in cubic feet was converted to tons using 27 cubic feet/cubic yard, 202 gallons/cubic yards, 2.5 pounds/gallon, and 2000 lbs/ton.

Figure 45. MO5 – Pump Station Maintenance (County)

6.2.3.4 Street Cleaning and Maintenance (MO6)

The amount of material removed through street sweeping activities shows that the County is diverting these pollutants from the storm drain system and receiving waters. **[OL4]**

The County has collected 8,069 tons of debris and 8,055 tons of green waste between 2014-2015 and 2018-2019 (**Figure 46**).

Total Amount of Green Waste Collected (tons)

Figure 46. MO6 – Street Sweeping (County)

6.2.4 Industrial and Commercial Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Industrial and Commercial Program Control Measures is assessed below.

6.2.4.1 Facility Inventory (IC1) and Prioritization and Inspection (IC2)

<u>Industrial and Commercial Inspections</u> – The County is proactively inspecting industrial and commercial facilities, providing outreach to increase awareness of the BMPs that should be implemented to protect stormwater quality, and determining whether these facilities are adequately implementing BMPs. The percent of industrial and commercial facilities adequately implementing BMPs has remained high over time. **[OL2, OL3]**

The County inspects its high priority industrial facilities once every two years (Figure 47).

Figure 47. IC1 & IC2 – Industrial Facilities and Inspections (County)

All inspected industrial facilities were found to have SWPPPs onsite, to have adequate BMPs, and to be in general compliance (Figure 48).

Figure 48. IC2 – Industrial Facility Inspection Results (County)

The County inspects an average of 25 high priority commercial facilities per year, in order to inspect all facilities once per permit term (Figure 49).

Figure 49. IC1 & IC2 – Commercial Facilities and Inspections (County)

The percent of commercial facilities with adequate BMPs and in general compliance increased in 2015-2016 and has remained at 100% since 2016-2017 (**Figure 50**).

Figure 50. IC2 – Commercial Facility Inspection Results (County)

6.2.5 Construction Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Construction Program Control Measures is assessed below.

6.2.5.1 Construction Site Inspections & BMP Implementation (CO5)

The County continues to work to educate construction site owners and operators as needed so that they are aware of the BMPs that are required to be implemented and maintained. **[OL2]**

The County had two construction sites greater than one acre in 2014-2015 and one in 2015-2016. Four follow-up inspections were conducted in 2014-2015 and none in 2015-2016. There have been no construction sites greater than one acre between 2016-2017 and 2018-2019.

6.2.5.2 Training (CO7)

The pre- and post-training surveys conducted after Construction Program training activities indicate that staff have been effectively trained and demonstrated increased understanding of the concepts presented. **[OL3]**

The County conducted a pre- and post-training survey during a staff training held in 2018-2019. Fourteen participants achieved an average of 57% correct on the pre-training survey, and 79% correct on the post-training survey, a 24% increase in understanding (**Figure 51**).

Figure 51. CO7 – Pre- and Post-Training Survey Results (CO7)

6.2.6 Planning and Land Development Program Effectiveness Assessment

The effectiveness of the County's programmatic activities associated with the Planning and Land Development Program Control Measures is assessed below.

6.2.6.1 Maintenance Agreement and Transfer (LD4)

The County programs have been requiring compliance with the SWQCCP; the owners of completed priority projects with post-construction BMPs installed have executed the appropriate maintenance agreements with the County. **[OL2]**

Since 2016-2017, all completed priority projects with post-construction BMPs in the County have executed maintenance agreements (**Figure 52**).

Figure 52. LD4 – Post-Construction BMPs (County)

This page intentionally left blank for printing purposes

7 Proposed SWMP Modifications

As a part of the annual reporting process, the City and the County have qualitatively evaluated the effectiveness of the stormwater program during the Permit term, as well as the experience that staff has had in implementing the program, to identify potential modifications.

Modifications to the monitoring approach have been identified, as follows:

- **Removal of Mormon Slough:** The previously approved monitoring approach included Mormon Slough, along with five other water bodies. It is proposed that Mormon Slough be removed from the monitoring program for the following reasons:
 - Mormon Slough has a small drainageshed, and stretches of Mormon Slough remain dry for days to months at a time during the winter and early spring. Overall, the slough is very shallow. As such, it is not a representative urban waterbody.
 - Mormon Slough has a substantial homeless population, which presents a safety risk for monitoring staff.
 - Mormon Slough has a mixed-use watershed with residential, commercial, and industrial land uses. The land uses and associated stormwater inputs are similar to Duck Creek and are captured by the inclusion of Duck Creek in the monitoring program.
- **Pyrethroids Basin Plan Amendment Monitoring at Five-Mile Slough:** The Central Valley Pyrethroids Basin Plan Amendment (BPA) became effective February 19, 2019. The BPA established a Pyrethroids Control Program, including a conditional prohibition of discharge. The conditional prohibition applies to SUA waterbodies. The BPA includes monitoring requirements for waterbodies subject to the conditional prohibition, and additional pyrethroid monitoring will be included in the monitoring program to comply with these requirements. Two types of monitoring are required: baseline and trend.
 - <u>Baseline Monitoring</u>: One year of representative Baseline Monitoring is required to be completed by October 19, 2021. This Baseline Monitoring will be conducted at Five-Mile Slough during 2020-2021 monitoring.
 - <u>Trend Monitoring</u>: Trend monitoring is intended to be conducted once every five years and will be conducted when Five-Mile Slough is next monitored (anticipated for 2027-2028).

In addition, the City and the County previously identified key program modifications in the June 2012 ROWD. These modifications will be incorporated into the revised SWMP and corresponding Work Plan prior to the submittal to the Regional Water Board (anticipated in 2020).

This page intentionally left blank for printing purposes

Appendix A Work Plan as submitted November 1, 2016

This page intentionally left blank for printing purposes

ID	Task Name	Q3	Q4	Q1	Q2
1	Section 1 - Program Management				
2	Program Coordination				
3	Review/revise SWMP as needed				
4	Co-permittees meet quarterly				
5	Participate in internal quarterly Stormwater Program Meetings				
6	Participate in statewide stormwater-related meetings, conferences, and				
0	stakeholder groups as needed				
7	Review/revise MOUs as necessary				
8	Establish, review, and revise cooperative agreements as needed				
9	Fiscal Analysis				
10	Review and revise the Fiscal Analysis reporting format as needed				
11	Legal Authority				
12	Review the legal authority as needed				

ID	Task Name	Q3	Q4	Q1	Q2
13	Section 2 - Illicit Discharges Program Element (ID)				
14	ID1 - Detection of Illicit Discharges and Illegal Connections				
15	Public Reporting				
16	Maintain and advertise Hotline				
17	Coordinate with other agencies and departments				
18	Field Crew Inspections				
19	Continue field observations for IDIC				
20	ID2 - Illegal Connection Identification and Elimination				
21	Investigate and eliminate illegal connections				
22	Coordinate with Planning and Land Development program				
23	Coordinate with Construction program				
24	ID3 - Investigation/Inspection and Follow Up				
25	Respond to illicit discharges				
26	Maintain contractual services for incident clean-up				
27	Maintain Illicit Discharges Database				
28	ID4 - Enforcement				
29	Implement progressive enforcement policy and procedures				
30	Track enforcement actions in Illicit Discharges Database				
31	ID5 - Training				
32	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
33	Section 3 - Public Outreach (PO)				
34	PO1 - Public Participation				
35	Implement Storm Drain Marker Program				
36	Organize, support, and/or participate in stream cleanup events				
37	Promote Used Oil and Household Hazardous Waste Programs				
38	Coordinate with Household Hazardous Waste program for pesticide disposal				
39	PO2 - Hotline				
40	Maintain 24-hr hotline number				
41	Promote/publicize the 24-hr hotline				
42	PO3 - Public Outreach Implementation				
43	Update Website as needed				
44	Implement pet waste outreach program				
45	Track installation of pet waste bag dispensing stations				
46	Participate in community-wide events throughout the year				
47	Conduct mixed media campaigns				
48	Provide community relations				
49	Implement pesticide outreach efforts for staff, residents, retail stores, and PCOs				
50	PO4 - Public School Education				
51	Continue to identify opportunities to reach out to school age children				

ID	Task Name	Q3	Q4	Q1	Q2
52	Section 4 - Municipal Operations (MO)				
53	MO1 - Sanitary Sewer Maintenance & Overflow and Spill Response				
54	Implement the Sanitary Sewer Overflow Emergency Response Plan (SSOERP)				
55	Review the SSOERP and revise as changes occur				
56	MO2 - Construction Requirements for Municipal Capital Improvement Projects				
57	Review CIP designs to ensure specifications and notes are included				
58	Require submission of NOI for CIPs greater than or equal to one acre				
59	If a priority project, develop in conformance with the SWQCCP				
60	Improve interdepartamental communication to facilitate accurate recordkeeping and reporting of data				
61	MO3 - Pollution Prevention at City Facilities				
62	Assess facilities to determine if they require coverage under the General Industrial Permit				
63	Implement SWPPP/FPPP for Corporation Yard and other facilities as needed				
64	Review CIP projects for compliance with general stormwater requirements, including review for vehicle or equipment wash areas				
65	MO4 - Landscape and Pest Management				
66	Implement pesticide and fertilizer application protocol at park sites, landscaped				
	medians, and golf courses				
67	Implement IPM program				
68	Maintain and expand internal inventory on pesticide use and track Parks Division reported pesticide use				
69	Implement Landscaping Standards				
70	MO5 - Storm Drain System Maintenance				
71	Implement storm drain system mapping				
72	Review/revise prioritization for catch basin cleaning as needed				
73	Maintain and annually update Catch Basin Database				
74	Implement catch basin maintenance program				
75	Implement pump station maintenance program				
76	Implement detention basin maintenance program				
77	Implement notification procedures for ID/IC and missing catch basin markers or illegible stencils				
78	Require large events and venues to address trash and debris removal, including containerization and street sweeping as appropriate				

ID	Task Name	Q3	Q4	Q1	Q2
79	MO6 - Street Cleaning and Maintenance				
80	Implement street sweeping program				
81	Review/revise prioritization of streets for street sweeping program as needed				
82	Implement green waste collection program				
83	Implement Maintenance Staff Guide Road Maintenance and Small Construction BMPs				
84	MO7 - Training				
85	Conduct training				
86	Section 5 - Industrial and Commercial Program Element (IC)				
87	IC1 - Facility Inventory				
88	Internal audit of database				
89	Maintain and annually update the inventory and database				
90	Map the industrial and commercial facilities on an annual basis				
91	Implement and track a self-certification program for carpet cleaners				
92	IC2 - Prioritization and Inspection				
93	Prioritization				
94	Prioritize facilities as necessary				
95	Inspections				
96	Review/revise industrial inspection checklists as needed				
97	Conduct inspections				
98	Conduct follow-up inspections as needed				
99	IC3 - BMP Implementation				
100	Review/revise BMP fact sheets for high priority facilities as needed				
101	Distribute BMP Fact Sheets				
102	Implement outreach efforts to carpet cleaners				
103	IC4 - Enforcement				
104	Implement progressive enforcement and referral policy and procedures				
105	Track enforcement actions in the industrial/commercial database				
106	Implement procedures for Regional Water Board based complaints				
107	Review and Revise Industrial General Permit referral policy as needed				
108	IC5 - Training				
109	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
110	Section 6 - Construction (CO)				
111	CO1 - Municipal Code for Construction Sites				
112	CO2 - Plan Review and Approval Process				
113	Review grading and building permit applications for SWPPP requirements				
	Review erosion control plans				
114	Distribute the Plan & Permit Application Review Procedure handout				
115	CO3 - Construction Projects Inventory				
116	Maintain and update the Construction Project Database				
117	CO4 - Construction Outreach				
118	Distribute appropriate BMP fact sheets during inspections				
119	CO5 - Construction Site Inspections & BMP Implementation				
120	Inspect construction sites >=1 acre monthly				
121	CO6 - Enforcement				
122	Implement progressive enforcement policy				
123	Track enforcement actions using the construction database				
124	CO7 - Training				
125	Conduct training				

ID	Task Name	Q3	Q4	Q1	Q2
126	Section 7 - Planning and Land Development (LD)				
107	LD1 - Incorporation of Water Quality Protection Principles into City Procedures				
127	and Policies				
128	Revise General Plan as needed				
129	LD2 - New Development Standards				
130	Require priority projects to comply with the revised SWQCCP				
131	LD3 - Plan Review Sign-off				
132	Revise Post-Construction Plan Review Database as needed				
133	Use Post-Construction Plan Review Database				
134	Review project plans and grading plans for stormwater BMPs				
135	Track projects with post-construction treatment control BMPs				
136	Conduct inspections of completed priority projects to ensure that all approved				
130	control measures have been implemented and are being maintained				
137	LD4 - Maintenance Agreement and Transfer				
138	Require Stormwater Treatment Device Access and Maintenance Agreement				
139	Implement Post-Construction BMP Maintenance Oversight Protocols				
140	LD5 - Training				
141	Conduct training				
142	Section 8 - Monitoring and Reporting Program				
143	Water Quality Monitoring (waterbody varies annually)				
144	Water quality parameters as needed				
145	Sediment toxicity and sediment chemistry as needed				
146	Water column toxicity as needed				
147	Delta Regional Monitoring Program				
148	Section 9 - Program Implementation, Evaluation, and Reporting				
149	Program Implementation				
150	Update Work Plan as needed				
151	Annual Report				

This page intentionally left blank for printing purposes
Appendix B 2018-2019 Monitoring Results

This page intentionally left blank for printing purposes

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW35	SC-1	9/24/18	E. Coli	SM 9223B	<	10		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-1R	9/24/18	E. Coli	SM 9223B	<	10		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-55	9/24/18	E. Coli	SM 9223B	=	20		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-55R	9/24/18	E. Coli	SM 9223B	=	20		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-56	9/24/18	E. Coli	SM 9223B	=	52		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-56R	9/24/18	E. Coli	SM 9223B	=	73		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW36	SC-1	1/30/19	E. Coli	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-1R	1/30/19	E. Coli	SM 9223B	=	717		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-55	1/30/19	E. Coli	SM 9223B	=	10		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-55R	1/30/19	E. Coli	SM 9223B	=	52		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-56	1/30/19	E. Coli	SM 9223B	=	10		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-56R	1/30/19	E. Coli	SM 9223B	=	74		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW37	SC-1	3/18/19	E. Coli	SM 9223B	=	107.1		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-1R	3/18/19	E. Coli	SM 9223B	=	4.1		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-55	3/18/19	E. Coli	SM 9223B	<	1		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-55R	3/18/19	E. Coli	SM 9223B	=	5.2		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-56	3/18/19	E. Coli	SM 9223B	=	1		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-56R	3/18/19	E. Coli	SM 9223B	=	4.1		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW38	SC-1	6/19/19	E. Coli	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-1R	6/19/19	E. Coli	SM 9223B	=	2		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-55	6/19/19	E. Coli	SM 9223B	=	8.6		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-55R	6/19/19	E. Coli	SM 9223B	=	26.2		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-56	6/19/19	E. Coli	SM 9223B	=	16.8		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-56R	6/19/19	E. Coli	SM 9223B	=	35.5		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
SE68	SC-1	11/29/18	E. Coli	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-1R	11/29/18	E. Coli	SM 9223B	=	488.4		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-55	11/29/18	E. Coli	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-55R	11/29/18	E. Coli	SM 9223B	=	1553.1		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-56	11/29/18	E. Coli	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-56R	11/29/18	E. Coli	SM 9223B	=	39.5		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE69	SC-1	12/16/18	E. Coli	SM 9223B	=	6488		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-1R	12/16/18	E. Coli	SM 9223B	=	3255		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-55	12/16/18	E. Coli	SM 9223B	=	9208		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-55R	12/16/18	E. Coli	SM 9223B	=	1187		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-56	12/16/18	E. Coli	SM 9223B	=	8164		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-56R	12/16/18	E. Coli	SM 9223B	=	857		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE70	SC-1	5/15/19	E. Coli	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-1R	5/15/19	E. Coli	SM 9223B	=	490		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE70	SC-55	5/15/19	E. Coli	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-55R	5/15/19	E. Coli	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-56	5/15/19	E. Coli	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-56R	5/15/19	E. Coli	SM 9223B	=	160		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
DW35	SC-1	9/24/18	Fecal Coliform	SM 9221B	<	18		18	MPN/100ml	U	FGL Env.	9/24/18	9/28/18
DW35	SC-1R	9/24/18	Fecal Coliform	SM 9221B	=	170		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-55	9/24/18	Fecal Coliform	SM 9221B	=	490		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-55R	9/24/18	Fecal Coliform	SM 9221B	=	130		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-56	9/24/18	Fecal Coliform	SM 9221B	=	330		18	MPN/100ml		FGL Env.	9/24/18	9/26/18
DW35	SC-56R	9/24/18	Fecal Coliform	SM 9221B	=	68		18	MPN/100ml		FGL Env.	9/24/18	9/27/18
DW36	SC-1	1/30/19	Fecal Coliform	SM 9221B	=	790000		18000	MPN/100ml		FGL Env.	1/30/19	2/1/19
DW36	SC-1R	1/30/19	Fecal Coliform	SM 9221B	=	1700		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-55	1/30/19	Fecal Coliform	SM 9221B	=	45		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-55R	1/30/19	Fecal Coliform	SM 9221B	=	110		18	MPN/100ml		FGL Env.	1/30/19	2/3/19
DW36	SC-56	1/30/19	Fecal Coliform	SM 9221B	=	40		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-56R	1/30/19	Fecal Coliform	SM 9221B	=	20		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW37	SC-1	3/18/19	Fecal Coliform	SM 9221B	=	1200		18	MPN/100ml		FGL Env.	3/18/19	3/22/19
DW37	SC-1R	3/18/19	Fecal Coliform	SM 9221B	=	110		18	MPN/100ml		FGL Env.	3/18/19	3/22/19
DW37	SC-55	3/18/19	Fecal Coliform	SM 9221B	<	18		18	MPN/100ml	U	FGL Env.	3/18/19	3/21/19
DW37	SC-55R	3/18/19	Fecal Coliform	SM 9221B	=	45		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-56	3/18/19	Fecal Coliform	SM 9221B	=	68		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-56R	3/18/19	Fecal Coliform	SM 9221B	=	230		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW38	SC-1	6/19/19	Fecal Coliform	SM 9221B	=	79000		1800	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-1R	6/19/19	Fecal Coliform	SM 9221B	=	78		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-55	6/19/19	Fecal Coliform	SM 9221B	=	78		18	MPN/100ml	U	FGL Env.	6/19/19	6/22/19
DW38	SC-55R	6/19/19	Fecal Coliform	SM 9221B	=	330		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-56	6/19/19	Fecal Coliform	SM 9221B	=	22000		180	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-56R	6/19/19	Fecal Coliform	SM 9221B	=	230		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
SE68	SC-1	11/29/18	Fecal Coliform	SM 9221B	=	230000		18000	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-1R	11/29/18	Fecal Coliform	SM 9221B	=	130000		1800	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-55	11/29/18	Fecal Coliform	SM 9221B	=	79000		1800	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE68	SC-55R	11/29/18	Fecal Coliform	SM 9221B	=	230000		18000	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE68	SC-56	11/29/18	Fecal Coliform	SM 9221B	=	490000		18000	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-56R	11/29/18	Fecal Coliform	SM 9221B	=	4900		180	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE69	SC-1	12/16/18	Fecal Coliform	SM 9221B	=	7900		180	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-1R	12/16/18	Fecal Coliform	SM 9221B	=	17000		180	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-55	12/16/18	Fecal Coliform	SM 9221B	=	11000		180	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-55R	12/16/18	Fecal Coliform	SM 9221B	=	2300		180	MPN/100ml		FGL Env.	12/16/18	12/19/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-56	12/16/18	Fecal Coliform	SM 9221B	=	33000		1800	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-56R	12/16/18	Fecal Coliform	SM 9221B	=	1300		18	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE70	SC-1	5/15/19	Fecal Coliform	SM 9221B	=	13000000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-1R	5/15/19	Fecal Coliform	SM 9221B	=	6300		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-55	5/15/19	Fecal Coliform	SM 9221B	=	3500000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-55R	5/15/19	Fecal Coliform	SM 9221B	=	110000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-56	5/15/19	Fecal Coliform	SM 9221B	=	130000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-56R	5/15/19	Fecal Coliform	SM 9221B	=	3300		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
DW35	SC-1	9/24/18	Total Coliform	SM 9221B	=	320		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-1	9/24/18	Total Coliform	SM 9223B	=	7701		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-1R	9/24/18	Total Coliform	SM 9221B	=	700		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-1R	9/24/18	Total Coliform	SM 9223B	=	8164		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-55	9/24/18	Total Coliform	SM 9221B	=	13000		180	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-55	9/24/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-55R	9/24/18	Total Coliform	SM 9221B	=	1700		18	MPN/100ml		FGL Env.	9/24/18	9/28/18
DW35	SC-55R	9/24/18	Total Coliform	SM 9223B	=	14136		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-56	9/24/18	Total Coliform	SM 9221B	=	23000		1800	MPN/100ml		FGL Env.	9/24/18	9/26/18
DW35	SC-56	9/24/18	Total Coliform	SM 9223B	=	24196		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW35	SC-56R	9/24/18	Total Coliform	SM 9221B	=	700		18	MPN/100ml		FGL Env.	9/24/18	9/27/18
DW35	SC-56R	9/24/18	Total Coliform	SM 9223B	=	4106		10	MPN/100ml		FGL Env.	9/24/18	9/25/18
DW36	SC-1	1/30/19	Total Coliform	SM 9221B	=	2300000		180000	MPN/100ml		FGL Env.	1/30/19	2/1/19
DW36	SC-1	1/30/19	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-1R	1/30/19	Total Coliform	SM 9221B	=	7900		180	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-1R	1/30/19	Total Coliform	SM 9223B	=	12033		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-55	1/30/19	Total Coliform	SM 9221B	=	2200		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-55	1/30/19	Total Coliform	SM 9223B	=	6488		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-55R	1/30/19	Total Coliform	SM 9221B	=	1100		18	MPN/100ml		FGL Env.	1/30/19	2/3/19
DW36	SC-55R	1/30/19	Total Coliform	SM 9223B	=	959		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-56	1/30/19	Total Coliform	SM 9221B	=	2200		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-56	1/30/19	Total Coliform	SM 9223B	=	19863		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW36	SC-56R	1/30/19	Total Coliform	SM 9221B	=	140		18	MPN/100ml		FGL Env.	1/30/19	2/2/19
DW36	SC-56R	1/30/19	Total Coliform	SM 9223B	=	884		10	MPN/100ml		FGL Env.	1/30/19	1/31/19
DW37	SC-1	3/18/19	Total Coliform	SM 9221B	=	11000		180	MPN/100ml		FGL Env.	3/18/19	3/22/19
DW37	SC-1	3/18/19	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-1R	3/18/19	Total Coliform	SM 9221B	=	1700		18	MPN/100ml		FGL Env.	3/18/19	3/22/19
DW37	SC-1R	3/18/19	Total Coliform	SM 9223B	=	165.8		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-55	3/18/19	Total Coliform	SM 9221B	=	2300		180	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-55	3/18/19	Total Coliform	SM 9223B	=	307.6		1	MPN/100ml		FGL Env.	3/18/19	3/19/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW37	SC-55R	3/18/19	Total Coliform	SM 9221B	=	1300		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-55R	3/18/19	Total Coliform	SM 9223B	=	110.6		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-56	3/18/19	Total Coliform	SM 9221B	=	1300		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-56	3/18/19	Total Coliform	SM 9223B	=	153.9		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW37	SC-56R	3/18/19	Total Coliform	SM 9221B	=	1300		18	MPN/100ml		FGL Env.	3/18/19	3/21/19
DW37	SC-56R	3/18/19	Total Coliform	SM 9223B	=	72.7		1	MPN/100ml		FGL Env.	3/18/19	3/19/19
DW38	SC-1	6/19/19	Total Coliform	SM 9221B	=	130000		1800	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-1	6/19/19	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-1R	6/19/19	Total Coliform	SM 9221B	=	1400		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-1R	6/19/19	Total Coliform	SM 9223B	=	1413.6		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-55	6/19/19	Total Coliform	SM 9221B	=	1200		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-55	6/19/19	Total Coliform	SM 9223B	=	727		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-55R	6/19/19	Total Coliform	SM 9221B	=	1200		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-55R	6/19/19	Total Coliform	SM 9223B	=	613.1		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-56	6/19/19	Total Coliform	SM 9221B	=	70000		1800	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-56	6/19/19	Total Coliform	SM 9223B	>	2149.6		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
DW38	SC-56R	6/19/19	Total Coliform	SM 9221B	=	790		18	MPN/100ml		FGL Env.	6/19/19	6/22/19
DW38	SC-56R	6/19/19	Total Coliform	SM 9223B	=	344.8		1	MPN/100ml		FGL Env.	6/19/19	6/20/19
SE68	SC-1	11/29/18	Total Coliform	SM 9221B	=	790000		18000	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-1	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-1R	11/29/18	Total Coliform	SM 9221B	=	130000		1800	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-1R	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-55	11/29/18	Total Coliform	SM 9221B	=	790000		18000	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE68	SC-55	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-55R	11/29/18	Total Coliform	SM 9221B	=	1700000		18000	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE68	SC-55R	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-56	11/29/18	Total Coliform	SM 9221B	=	1300000		18000	MPN/100ml		FGL Env.	11/29/18	12/3/18
SE68	SC-56	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE68	SC-56R	11/29/18	Total Coliform	SM 9221B	=	23000		1800	MPN/100ml		FGL Env.	11/29/18	12/2/18
SE68	SC-56R	11/29/18	Total Coliform	SM 9223B	>	2419.6		1	MPN/100ml		FGL Env.	11/29/18	11/30/18
SE69	SC-1	12/16/18	Total Coliform	SM 9221B	=	330000		18000	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-1	12/16/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-1R	12/16/18	Total Coliform	SM 9221B	=	230000		18000	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-1R	12/16/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-55	12/16/18	Total Coliform	SM 9221B	=	330000		18000	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-55	12/16/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-55R	12/16/18	Total Coliform	SM 9221B	=	49000		1800	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-55R	12/16/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	12/16/18	12/17/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-56	12/16/18	Total Coliform	SM 9221B	=	490000		18000	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-56	12/16/18	Total Coliform	SM 9223B	>	24196		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE69	SC-56R	12/16/18	Total Coliform	SM 9221B	=	11000		180	MPN/100ml		FGL Env.	12/16/18	12/19/18
SE69	SC-56R	12/16/18	Total Coliform	SM 9223B	=	12033		10	MPN/100ml		FGL Env.	12/16/18	12/17/18
SE70	SC-1	5/15/19	Total Coliform	SM 9221B	=	16000000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-1	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-1R	5/15/19	Total Coliform	SM 9221B	=	6300		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-1R	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-55	5/15/19	Total Coliform	SM 9221B	=	54000000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-55	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-55R	5/15/19	Total Coliform	SM 9221B	=	490000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-55R	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-56	5/15/19	Total Coliform	SM 9221B	=	220000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-56	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
SE70	SC-56R	5/15/19	Total Coliform	SM 9221B	=	33000		2	MPN/100ml		GeoAnalytical	5/16/19	5/19/19
SE70	SC-56R	5/15/19	Total Coliform	SM 9223B	>	2420		1	MPN/100ml		GeoAnalytical	5/16/19	5/17/19
DW35	SC-1	9/24/18	DO - Field		=	6.4		0.01	mg/L		Field		
DW35	SC-1R	9/24/18	DO - Field		=	7.1		0.01	mg/L		Field		
DW35	SC-55	9/24/18	DO - Field		=	3.78		0.01	mg/L		Field		
DW35	SC-55R	9/24/18	DO - Field		=	7.16		0.01	mg/L		Field		
DW35	SC-56	9/24/18	DO - Field		=	2.56		0.01	mg/L		Field		
DW35	SC-56R	9/24/18	DO - Field		=	8.06		0.01	mg/L		Field		
DW36	SC-1	1/30/19	DO - Field		=	8.66		0.01	mg/L		Field		
DW36	SC-1R	1/30/19	DO - Field		=	9.48		0.01	mg/L		Field		
DW36	SC-55	1/30/19	DO - Field		=	5.12		0.01	mg/L		Field		
DW36	SC-55R	1/30/19	DO - Field		=	7.67		0.01	mg/L		Field		
DW36	SC-56	1/30/19	DO - Field		=	5.17		0.01	mg/L		Field		
DW36	SC-56R	1/30/19	DO - Field		=	7.58		0.01	mg/L		Field		
DW37	SC-1	3/18/19	DO - Field		=	7.74		0.01	mg/L		Field		
DW37	SC-1R	3/18/19	DO - Field		=	12.24		0.01	mg/L		Field		
DW37	SC-55	3/18/19	DO - Field		=	7.94		0.01	mg/L		Field		
DW37	SC-55R	3/18/19	DO - Field		=	10.29		0.01	mg/L		Field		
DW37	SC-56	3/18/19	DO - Field		=	5.21		0.01	mg/L		Field		
DW37	SC-56R	3/18/19	DO - Field		=	10.07		0.01	mg/L		Field		
DW38	SC-1	6/19/19	DO - Field		=	6		0.01	mg/L		Field		
DW38	SC-1R	6/19/19	DO - Field		=	6.29		0.01	mg/L		Field		
DW38	SC-55	6/19/19	DO - Field		=	4.04		0.01	mg/L		Field		
DW38	SC-55R	6/19/19	DO - Field		=	6.6		0.01	mg/L		Field		

Event	Site Code	Date Sampleo	d Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW38	SC-56	6/19/19	DO - Field		=	3.08		0.01	mg/L		Field		
DW38	SC-56R	6/19/19	DO - Field		=	8.08		0.01	mg/L		Field		
SE68	NE-RAIN	11/29/18	DO - Field		=	11.49		0.01	mg/L		Field		
SE68	NW-RAIN	11/29/18	DO - Field		=	9.58		0.01	mg/L		Field		
SE68	SC-1	11/29/18	DO - Field		=	10.18		0.01	mg/L		Field		
SE68	SC-1R	11/29/18	DO - Field		=	10.25		0.01	mg/L		Field		
SE68	SC-55	11/29/18	DO - Field		=	7.75		0.01	mg/L		Field		
SE68	SC-55R	11/29/18	DO - Field		=	6.04		0.01	mg/L		Field		
SE68	SC-56	11/29/18	DO - Field		=	8.33		0.01	mg/L		Field		
SE68	SC-56R	11/29/18	DO - Field		=	6.86		0.01	mg/L		Field		
SE68	SC-RAIN	11/29/18	DO - Field		=	10.77		0.01	mg/L		Field		
SE69	NE-RAIN	12/17/18	DO - Field		=	10.67		0.01	mg/L		Field		
SE69	NW-RAIN	12/16/18	DO - Field		=	10.24		0.01	mg/L		Field		
SE69	SC-1	12/16/18	DO - Field		=	8.49		0.01	mg/L		Field		
SE69	SC-1R	12/16/18	DO - Field		=	6.51		0.01	mg/L		Field		
SE69	SC-55	12/16/18	DO - Field		=	9.82		0.01	mg/L		Field		
SE69	SC-55R	12/16/18	DO - Field		=	5.06		0.01	mg/L		Field		
SE69	SC-56	12/16/18	DO - Field		=	8.12		0.01	mg/L		Field		
SE69	SC-56R	12/16/18	DO - Field		=	7.13		0.01	mg/L		Field		
SE69	SC-RAIN	12/16/18	DO - Field		=	7.93		0.01	mg/L		Field		
SE70	NE-RAIN	5/16/19	DO - Field		=	6.99		0.01	mg/L		Field		
SE70	NW-RAIN	5/16/19	DO - Field		=	9.27		0.01	mg/L		Field		
SE70	SC-1	5/15/19	DO - Field		=	8.03		0.01	mg/L		Field		
SE70	SC-1R	5/15/19	DO - Field		=	7.75		0.01	mg/L		Field		
SE70	SC-55	5/15/19	DO - Field		=	5.8		0.01	mg/L		Field		
SE70	SC-55R	5/15/19	DO - Field		=	6.42		0.01	mg/L		Field		
SE70	SC-56	5/15/19	DO - Field		=	5.86		0.01	mg/L		Field		
SE70	SC-56R	5/15/19	DO - Field		=	7.4		0.01	mg/L		Field		
SE70	SC-RAIN	5/16/19	DO - Field		=	8.3		0.01	mg/L		Field		
DW35	SC-1	9/24/18	Oil and Grease	1664A	=	3.94	1.5	3	mg/L		FGL Env.	10/3/18	10/4/18
DW35	SC-1R	9/24/18	Oil and Grease	1664A	=	3.49	1.5	3	mg/L		FGL Env.	10/3/18	10/4/18
DW36	SC-1	1/30/19	Oil and Grease	1664A	<	1.9	1.9	3	mg/L	ND, U	FGL Env.	2/11/19	2/13/19
DW36	SC-1R	1/30/19	Oil and Grease	1664A	=	3.04	1.9	3	mg/L		FGL Env.	2/11/19	2/13/19
DW37	SC-1	3/18/19	Oil and Grease	1664A	<	1.9	1.9	3	mg/L	ND, U	FGL Env.	4/3/19	4/4/19
DW37	SC-1R	3/18/19	Oil and Grease	1664A	<	1.9	1.9	3	mg/L	ND, U	FGL Env.	4/3/19	4/4/19
DW38	SC-1	6/19/19	Oil and Grease	1664A	=	5.44	1.9	3	mg/L		FGL Env.	6/27/19	7/1/19
DW38	SC-1R	6/19/19	Oil and Grease	1664A	=	4.78	1.9	3	mg/L		FGL Env.	6/27/19	7/1/19
SE68	SC-1	11/29/18	Oil and Grease	1664A	=	3.19	1.9	3	mg/L		FGL Env.	12/6/18	12/8/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	SC-1R	11/29/18	Oil and Grease	1664A	=	4.11	1.9	3	mg/L		FGL Env.	12/6/18	12/10/18
SE69	SC-1	12/16/18	Oil and Grease	1664A	=	5.56	1.9	3	mg/L		FGL Env.	1/2/19	1/3/19
SE69	SC-1R	12/16/18	Oil and Grease	1664A	=	4.12	1.9	3	mg/L		FGL Env.	1/2/19	1/3/19
SE70	SC-1	5/15/19	Oil and Grease	1664A	=	2.34	1.9	3	mg/L	J	FGL Env.	5/29/19	5/30/19
SE70	SC-1R	5/15/19	Oil and Grease	1664A	=	2.56	1.9	3	mg/L	J	FGL Env.	5/29/19	5/30/19
DW35	SC-1	9/24/18	pH - Field		=	7.89		0-14	pH Units		Field		
DW35	SC-1R	9/24/18	pH - Field		=	8.22		0-14	pH Units		Field		
DW35	SC-55	9/24/18	pH - Field		=	7.4		0-14	pH Units		Field		
DW35	SC-55R	9/24/18	pH - Field		=	7.98		0-14	pH Units		Field		
DW35	SC-56	9/24/18	pH - Field		=	7.63		0-14	pH Units		Field		
DW35	SC-56R	9/24/18	pH - Field		=	8.2		0-14	pH Units		Field		
DW36	SC-1	1/30/19	pH - Field		=	8.26		0-14	pH Units		Field		
DW36	SC-1R	1/30/19	pH - Field		=	8.39		0-14	pH Units		Field		
DW36	SC-55	1/30/19	pH - Field		=	7.61		0-14	pH Units		Field		
DW36	SC-55R	1/30/19	pH - Field		=	7.64		0-14	pH Units		Field		
DW36	SC-56	1/30/19	pH - Field		=	7.32		0-14	pH Units		Field		
DW36	SC-56R	1/30/19	pH - Field		=	7.65		0-14	pH Units		Field		
DW37	SC-1	3/18/19	pH - Field		=	7.22		0-14	pH Units		Field		
DW37	SC-1R	3/18/19	pH - Field		=	8.4		0-14	pH Units		Field		
DW37	SC-55	3/18/19	pH - Field		=	7.96		0-14	pH Units		Field		
DW37	SC-55R	3/18/19	pH - Field		=	8.27		0-14	pH Units		Field		
DW37	SC-56	3/18/19	pH - Field		=	7.59		0-14	pH Units		Field		
DW37	SC-56R	3/18/19	pH - Field		=	8.27		0-14	pH Units		Field		
DW38	SC-1	6/19/19	pH - Field		=	7.6		0-14	pH Units		Field		
DW38	SC-1R	6/19/19	pH - Field		=	7.92		0-14	pH Units		Field		
DW38	SC-55	6/19/19	pH - Field		=	7.59		0-14	pH Units		Field		
DW38	SC-55R	6/19/19	pH - Field		=	8.09		0-14	pH Units		Field		
DW38	SC-56	6/19/19	pH - Field		=	7.41		0-14	pH Units		Field		
DW38	SC-56R	6/19/19	pH - Field		=	8.12		0-14	pH Units		Field		
SE68	NE-RAIN	11/29/18	pH - Field		=	7.14		0-14	pH Units		Field		
SE68	NW-RAIN	11/29/18	pH - Field		=	8.05		0-14	pH Units		Field		
SE68	SC-1	11/29/18	pH - Field		=	6.77		0-14	pH Units		Field		
SE68	SC-1R	11/29/18	pH - Field		=	6.77		0-14	pH Units		Field		
SE68	SC-55	11/29/18	pH - Field		=	6.82		0-14	pH Units		Field		
SE68	SC-55R	11/29/18	pH - Field		=	7.08		0-14	pH Units		Field		
SE68	SC-56	11/29/18	pH - Field		=	7.09		0-14	pH Units		Field		
SE68	SC-56R	11/29/18	pH - Field		=	7.44		0-14	pH Units		Field		
SE68	SC-RAIN	11/29/18	pH - Field		=	5.47		0-14	pH Units		Field		

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	NE-RAIN	12/17/18	pH - Field		=	6.89		0-14	pH Units		Field	i	
SE69	NW-RAIN	12/16/18	pH - Field		=	7.46		0-14	pH Units		Field		
SE69	SC-1	12/16/18	pH - Field		=	7.63		0-14	pH Units		Field		
SE69	SC-1R	12/16/18	pH - Field		=	7.03		0-14	pH Units		Field		
SE69	SC-55	12/16/18	pH - Field		=	6.93		0-14	pH Units		Field		
SE69	SC-55R	12/16/18	pH - Field		=	7.06		0-14	pH Units		Field		
SE69	SC-56	12/16/18	pH - Field		=	7.36		0-14	pH Units		Field		
SE69	SC-56R	12/16/18	pH - Field		=	7.21		0-14	pH Units		Field		
SE69	SC-RAIN	12/16/18	pH - Field		=	6.98		0-14	pH Units		Field		
SE70	NE-RAIN	5/16/19	pH - Field		=	6.79		0-14	pH Units		Field		
SE70	NW-RAIN	5/16/19	pH - Field		=	6.89		0-14	pH Units		Field		
SE70	SC-1	5/15/19	pH - Field		=	7.3		0-14	pH Units		Field		
SE70	SC-1R	5/15/19	pH - Field		=	8.17		0-14	pH Units		Field		
SE70	SC-55	5/15/19	pH - Field		=	7.19		0-14	pH Units		Field		
SE70	SC-55R	5/15/19	pH - Field		=	7.7		0-14	pH Units		Field		
SE70	SC-56	5/15/19	pH - Field		=	7.38		0-14	pH Units		Field		
SE70	SC-56R	5/15/19	pH - Field		=	7.81		0-14	pH Units		Field		
SE70	SC-RAIN	5/16/19	pH - Field		=	7.98		0-14	pH Units		Field		
DW35	SC-1	9/24/18	Temperature - Field		=	22.2		0.01	°C		Field		
DW35	SC-1R	9/24/18	Temperature - Field		=	23.4		0.01	°C		Field		
DW35	SC-55	9/24/18	Temperature - Field		=	25.5		0.01	°C		Field		
DW35	SC-55R	9/24/18	Temperature - Field		=	24.6		0.01	°C		Field		
DW35	SC-56	9/24/18	Temperature - Field		=	25.3		0.01	°C		Field		
DW35	SC-56R	9/24/18	Temperature - Field		=	25.9		0.01	°C		Field		
DW36	SC-1	1/30/19	Temperature - Field		=	18.7		0.01	°C		Field		
DW36	SC-1R	1/30/19	Temperature - Field		=	15.3		0.01	°C		Field		
DW36	SC-55	1/30/19	Temperature - Field		=	14.7		0.01	°C		Field		
DW36	SC-55R	1/30/19	Temperature - Field		=	13.4		0.01	°C		Field		
DW36	SC-56	1/30/19	Temperature - Field		=	15.3		0.01	°C		Field		
DW36	SC-56R	1/30/19	Temperature - Field		=	13.4		0.01	°C		Field		
DW37	SC-1	3/18/19	Temperature - Field		=	17.1		0.01	°C		Field		
DW37	SC-1R	3/18/19	Temperature - Field		=	16.9		0.01	°C		Field		
DW37	SC-55	3/18/19	Temperature - Field		=	16.4		0.01	°C		Field		
DW37	SC-55R	3/18/19	Temperature - Field		=	17		0.01	°C		Field		
DW37	SC-56	3/18/19	Temperature - Field		=	17.8		0.01	°C		Field		
DW37	SC-56R	3/18/19	Temperature - Field		=	17.7		0.01	°C		Field		
DW38	SC-1	6/19/19	Temperature - Field		=	24.2		0.01	°C		Field		
DW38	SC-1R	6/19/19	Temperature - Field		=	27.7		0.01	°C		Field		

Event	Site Code	Date Sampled	I Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW38	SC-55	6/19/19	Temperature - Field		=	23.3		0.01	°C		Field		
DW38	SC-55R	6/19/19	Temperature - Field		=	29.2		0.01	°C		Field		
DW38	SC-56	6/19/19	Temperature - Field		=	23		0.01	°C		Field		
DW38	SC-56R	6/19/19	Temperature - Field		=	27.3		0.01	°C		Field		
SE68	NE-RAIN	11/29/18	Temperature - Field		=	14.6		0.01	°C		Field		
SE68	NW-RAIN	11/29/18	Temperature - Field		=	14.5		0.01	°C		Field		
SE68	SC-1	11/29/18	Temperature - Field		=	14.7		0.01	°C		Field		
SE68	SC-1R	11/29/18	Temperature - Field		=	13.8		0.01	°C		Field		
SE68	SC-55	11/29/18	Temperature - Field		=	14.7		0.01	°C		Field		
SE68	SC-55R	11/29/18	Temperature - Field		=	13.7		0.01	°C		Field		
SE68	SC-56	11/29/18	Temperature - Field		=	14.5		0.01	°C		Field		
SE68	SC-56R	11/29/18	Temperature - Field		=	13.1		0.01	°C		Field		
SE68	SC-RAIN	11/29/18	Temperature - Field		=	12.1		0.01	°C		Field		
SE69	NE-RAIN	12/17/18	Temperature - Field		=	11.3		0.01	°C		Field		
SE69	NW-RAIN	12/16/18	Temperature - Field		=	12		0.01	°C		Field		
SE69	SC-1	12/16/18	Temperature - Field		=	13.3		0.01	°C		Field		
SE69	SC-1R	12/16/18	Temperature - Field		=	11.5		0.01	°C		Field		
SE69	SC-55	12/16/18	Temperature - Field		=	13		0.01	°C		Field		
SE69	SC-55R	12/16/18	Temperature - Field		=	11.3		0.01	°C		Field		
SE69	SC-56	12/16/18	Temperature - Field		=	13.2		0.01	°C		Field		
SE69	SC-56R	12/16/18	Temperature - Field		=	11.2		0.01	°C		Field		
SE69	SC-RAIN	12/16/18	Temperature - Field		=	12.4		0.01	°C		Field		
SE70	NE-RAIN	5/16/19	Temperature - Field		=	23.9		0.01	°C		Field		
SE70	NW-RAIN	5/16/19	Temperature - Field		=	20.9		0.01	°C		Field		
SE70	SC-1	5/15/19	Temperature - Field		=	19.9		0.01	°C		Field		
SE70	SC-1R	5/15/19	Temperature - Field		=	20.9		0.01	°C		Field		
SE70	SC-55	5/15/19	Temperature - Field		=	19.9		0.01	°C		Field		
SE70	SC-55R	5/15/19	Temperature - Field		=	20.1		0.01	°C		Field		
SE70	SC-56	5/15/19	Temperature - Field		=	19.1		0.01	°C		Field		
SE70	SC-56R	5/15/19	Temperature - Field		=	18.6		0.01	°C		Field		
SE70	SC-RAIN	5/16/19	Temperature - Field		=	22		0.01	°C		Field		
DW35	SC-1	9/24/18	Alkalinity (as CaCO3)	2320B	=	110	1.1	10	mg/L		FGL Env.	9/25/17	9/25/18
DW35	SC-1R	9/24/18	Alkalinity (as CaCO3)	2320B	=	106	1.1	10	mg/L		FGL Env.	9/25/18	9/25/18
DW36	SC-1	1/30/19	Alkalinity (as CaCO3)	2320B	=	330	1.1	10	mg/L		FGL Env.	2/5/19	2/5/19
DW36	SC-1R	1/30/19	Alkalinity (as CaCO3)	2320B	=	71.3	1.1	10	mg/L		FGL Env.	2/5/19	2/5/19
DW37	SC-1	3/18/19	Alkalinity (as CaCO3)	2320B	=	249	1.1	10	mg/L		FGL Env.	3/20/19	3/20/19
DW37	SC-1R	3/18/19	Alkalinity (as CaCO3)	2320B	=	77.3	1.1	10	mg/L		FGL Env.	3/20/19	3/20/19
DW38	SC-1	6/19/19	Alkalinity (as CaCO3)	2320B	=	165	1.1	10	mg/L		FGL Env.	6/26/19	6/26/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW38	SC-1R	6/19/19	Alkalinity (as CaCO3)	2320B	=	62.5	1.1	10	mg/L		FGL Env.	6/26/19	6/26/19
SE68	SC-1	11/29/18	Alkalinity (as CaCO3)	2320B	=	18.8	1.1	10	mg/L		FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Alkalinity (as CaCO3)	2320B	=	49.9	1.1	10	mg/L		FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Alkalinity (as CaCO3)	2320B	=	14	1.1	10	mg/L		FGL Env.	12/19/18	12/19/18
SE69	SC-1R	12/16/18	Alkalinity (as CaCO3)	2320B	=	62.7	1.1	10	mg/L		FGL Env.	12/19/18	12/19/18
SE70	SC-1	5/15/19	Alkalinity (as CaCO3)	2320B	=	36.7	1.1	10	mg/L		FGL Env.	5/21/19	5/21/19
SE70	SC-1R	5/15/19	Alkalinity (as CaCO3)	2320B	=	106	1.1	10	mg/L		FGL Env.	5/21/19	5/21/19
DW35	SC-1	9/24/18	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	10/1/17	10/1/18
DW35	SC-1R	9/24/18	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	10/1/18	10/1/18
DW36	SC-1	1/30/19	Ammonia Nitrogen	4500NH3G	=	0.537	0.072	0.2	mg/L		FGL Env.	2/4/19	2/4/19
DW36	SC-1R	1/30/19	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	2/4/19	2/4/19
DW37	SC-1	3/18/19	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	3/25/19	3/25/19
DW37	SC-1R	3/18/19	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	ND, U	FGL Env.	3/25/19	3/25/19
DW38	SC-1	6/19/19	Ammonia Nitrogen	4500NH3G	<	0.036	0.036	0.2	mg/L	ND, U	FGL Env.	6/24/19	6/24/19
DW38	SC-1R	6/19/19	Ammonia Nitrogen	4500NH3G	<	0.036	0.036	0.2	mg/L	ND, U	FGL Env.	6/24/19	6/24/19
SE68	SC-1	11/29/18	Ammonia Nitrogen	4500NH3G	=	0.417	0.072	0.2	mg/L		FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Ammonia Nitrogen	4500NH3G	=	0.237	0.072	0.2	mg/L		FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Ammonia Nitrogen	4500NH3G	=	0.694	0.072	0.2	mg/L		FGL Env.	12/24/18	12/24/18
SE69	SC-1R	12/16/18	Ammonia Nitrogen	4500NH3G	=	0.724	0.072	0.2	mg/L		FGL Env.	12/24/18	12/24/18
SE70	SC-1	5/15/19	Ammonia Nitrogen	4500NH3G	=	0.983	0.072	0.2	mg/L		FGL Env.	5/20/19	5/20/19
SE70	SC-1R	5/15/19	Ammonia Nitrogen	4500NH3G	<	0.072	0.072	0.2	mg/L	U, ND	FGL Env.	5/20/19	5/20/19
DW35	SC-1	9/24/18	Bicarbonate	2320B	=	134	1.1	10	mg/L		FGL Env.	9/25/17	9/25/18
DW35	SC-1R	9/24/18	Bicarbonate	2320B	=	129	1.1	10	mg/L		FGL Env.	9/25/18	9/25/18
DW36	SC-1	1/30/19	Bicarbonate	2320B	=	403	1.1	10	mg/L		FGL Env.	2/5/19	2/5/19
DW36	SC-1R	1/30/19	Bicarbonate	2320B	=	86.9	1.1	10	mg/L		FGL Env.	2/5/19	2/5/19
DW37	SC-1	3/18/19	Bicarbonate	2320B	=	304	1.1	10	mg/L		FGL Env.	3/20/19	3/20/19
DW37	SC-1R	3/18/19	Bicarbonate	2320B	=	94.4	1.1	10	mg/L		FGL Env.	3/20/19	3/20/19
DW38	SC-1	6/19/19	Bicarbonate	2320B	=	201	1.1	10	mg/L		FGL Env.	6/26/19	6/26/19
DW38	SC-1R	6/19/19	Bicarbonate	2320B	=	76.1	1.1	10	mg/L		FGL Env.	6/26/19	6/26/19
SE68	SC-1	11/29/18	Bicarbonate	2320B	=	22.9	1.1	10	mg/L		FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Bicarbonate	2320B	=	61	1.1	10	mg/L		FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Bicarbonate	2320B	=	17.1	1.1	10	mg/L		FGL Env.	12/19/18	12/19/18
SE69	SC-1R	12/16/18	Bicarbonate	2320B	=	76.6	1.1	10	mg/L		FGL Env.	12/19/18	12/19/18
SE70	SC-1	5/15/19	Bicarbonate	2320B	=	44.9	1.1	10	mg/L		FGL Env.	5/21/19	5/21/19
SE70	SC-1R	5/15/19	Bicarbonate	2320B	=	130	1.1	10	mg/L		FGL Env.	5/21/19	5/21/19
DW35	SC-1	9/24/18	BOD	5210B	=	3.9	0.19	2	mg/L	I	FGL Env.	9/24/18	9/29/18
DW35	SC-1R	9/24/18	BOD	5210B	=	4.6	0.19	2	mg/L	I	FGL Env.	9/24/18	9/29/18
DW36	SC-1	1/30/19	BOD	5210B	=	4.7	0.19	2	mg/L	I	FGL Env.	1/31/19	2/5/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW36	SC-1R	1/30/19	BOD	5210B	=	6.5	0.19	2	mg/L		FGL Env.	1/31/19	2/5/19
DW37	SC-1	3/18/19	BOD	5210B	=	0.8	0.19	2	mg/L	J	FGL Env.	3/19/19	3/24/19
DW37	SC-1R	3/18/19	BOD	5210B	=	6.9	0.19	2	mg/L		FGL Env.	3/19/19	3/24/19
DW38	SC-1	6/19/19	BOD	5210B	=	3.4	0.19	2	mg/L		FGL Env.	6/20/19	6/25/19
DW38	SC-1R	6/19/19	BOD	5210B	=	3.2	0.19	2	mg/L		FGL Env.	6/20/19	6/25/19
SE68	SC-1	11/29/18	BOD	5210B	=	33.8	0.19	17	mg/L		FGL Env.	11/29/18	12/4/18
SE68	SC-1R	11/29/18	BOD	5210B	=	5.8	0.19	2	mg/L		FGL Env.	11/29/18	12/4/18
SE69	SC-1	12/16/18	BOD	5210B	=	24.6	0.19	8.7	mg/L		FGL Env.	12/17/18	12/22/18
SE69	SC-1R	12/16/18	BOD	5210B	=	8.58	0.19	4.3	mg/L		FGL Env.	12/17/18	12/22/18
SE70	SC-1	5/15/19	BOD	5210B	=	29.2	0.19	8.7	mg/L		FGL Env.	5/16/19	5/21/19
SE70	SC-1R	5/15/19	BOD	5210B	=	5.8	0.19	2	mg/L		FGL Env.	5/16/19	5/21/19
DW35	SC-1	9/24/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	9/25/17	9/25/18
DW35	SC-1R	9/24/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	9/25/18	9/25/18
DW36	SC-1	1/30/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	2/5/19	2/5/19
DW36	SC-1R	1/30/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	2/5/19	2/5/19
DW37	SC-1	3/18/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	3/20/19	3/20/19
DW37	SC-1R	3/18/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	3/20/19	3/20/19
DW38	SC-1	6/19/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	6/26/19	6/26/19
DW38	SC-1R	6/19/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	6/26/19	6/26/19
SE68	SC-1	11/29/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/19/18	12/19/18
SE69	SC-1R	12/16/18	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/19/18	12/19/18
SE70	SC-1	5/15/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/21/19	5/21/19
SE70	SC-1R	5/15/19	Carbonate	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/21/19	5/21/19
DW35	SC-1	9/24/18	COD	5220D	=	15.3	4.4	20	mg/L	Jb	FGL Env.	9/28/18	9/28/18
DW35	SC-1R	9/24/18	COD	5220D	=	39.8	4.4	20	mg/L		FGL Env.	10/5/18	10/5/18
DW36	SC-1	1/30/19	COD	5220D	<	7.9	7.9	20	mg/L	ND, Ub	FGL Env.	2/4/19	2/4/19
DW36	SC-1R	1/30/19	COD	5220D	=	11.8	7.9	20	mg/L	Jb	FGL Env.	2/4/19	2/4/19
DW37	SC-1	3/18/19	COD	5220D	<	7.9	7.9	20	mg/L	ND, Uhb	FGL Env.	3/25/19	3/25/19
DW37	SC-1R	3/18/19	COD	5220D	=	16.8	7.9	20	mg/L	Jhb	FGL Env.	3/25/19	3/25/19
DW38	SC-1	6/19/19	COD	5220D	=	13.9	7.9	20	mg/L	J	FGL Env.	6/24/19	6/24/19
DW38	SC-1R	6/19/19	COD	5220D	<	7.9	7.9	20	mg/L	ND, U	FGL Env.	6/24/19	6/24/19
SE68	SC-1	11/29/18	COD	5220D	=	109	7.9	20	mg/L	b	FGL Env.	12/17/18	12/17/18
SE68	SC-1R	11/29/18	COD	5220D	=	24.2	7.9	20	mg/L	b	FGL Env.	12/10/18	12/10/18
SE69	SC-1	12/16/18	COD	5220D	=	81.6	7.9	20	mg/L	b	FGL Env.	1/2/19	1/2/19
SE69	SC-1R	12/16/18	COD	5220D	=	21.7	7.9	20	mg/L	b	FGL Env.	1/2/19	1/2/19
SE70	SC-1	5/15/19	COD	5220D	=	140	7.9	20	mg/L		FGL Env.	5/20/19	5/20/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE70	SC-1R	5/15/19	COD	5220D	=	34.1	7.9	20	mg/L		FGL Env.	5/29/19	5/29/19
DW35	SC-1	9/24/18	EC - Field		=	840		1	µS/cm		Field		
DW35	SC-1R	9/24/18	EC - Field		=	908		1	µS/cm		Field		
DW35	SC-55	9/24/18	EC - Field		=	991		1	µS/cm		Field		
DW35	SC-55R	9/24/18	EC - Field		=	930		1	µS/cm		Field		
DW35	SC-56	9/24/18	EC - Field		=	302		1	µS/cm		Field		
DW35	SC-56R	9/24/18	EC - Field		=	937		1	µS/cm		Field		
DW36	SC-1	1/30/19	EC - Field		=	977		1	µS/cm		Field		
DW36	SC-1R	1/30/19	EC - Field		=	372.3		1	µS/cm		Field		
DW36	SC-55	1/30/19	EC - Field		=	693		1	µS/cm		Field		
DW36	SC-55R	1/30/19	EC - Field		=	451.6		1	µS/cm		Field		
DW36	SC-56	1/30/19	EC - Field		=	391.7		1	µS/cm		Field		
DW36	SC-56R	1/30/19	EC - Field		=	608.2		1	µS/cm		Field		
DW37	SC-1	3/18/19	EC - Field		=	750		1	µS/cm		Field		
DW37	SC-1R	3/18/19	EC - Field		=	761		1	µS/cm		Field		
DW37	SC-55	3/18/19	EC - Field		=	582.1		1	µS/cm		Field		
DW37	SC-55R	3/18/19	EC - Field		=	277.4		1	µS/cm		Field		
DW37	SC-56	3/18/19	EC - Field		=	1165		1	µS/cm		Field		
DW37	SC-56R	3/18/19	EC - Field		=	278.1		1	µS/cm		Field		
DW38	SC-1	6/19/19	EC - Field		=	543		1	µS/cm		Field		
DW38	SC-1R	6/19/19	EC - Field		=	225.1		1	µS/cm		Field		
DW38	SC-55	6/19/19	EC - Field		=	317.5		1	µS/cm		Field		
DW38	SC-55R	6/19/19	EC - Field		=	183		1	µS/cm		Field		
DW38	SC-56	6/19/19	EC - Field		=	466.5		1	µS/cm		Field		
DW38	SC-56R	6/19/19	EC - Field		=	150.5		1	µS/cm		Field		
SE68	NE-RAIN	11/29/18	EC - Field		=	15.2		1	µS/cm		Field		
SE68	NW-RAIN	11/29/18	EC - Field		=	12.5		1	µS/cm		Field		
SE68	SC-1	11/29/18	EC - Field		=	83.1		1	µS/cm		Field		
SE68	SC-1R	11/29/18	EC - Field		=	268.6		1	µS/cm		Field		
SE68	SC-55	11/29/18	EC - Field		=	66.4		1	µS/cm		Field		
SE68	SC-55R	11/29/18	EC - Field		=	321.5		1	µS/cm		Field		
SE68	SC-56	11/29/18	EC - Field		=	81.3		1	µS/cm		Field		
SE68	SC-56R	11/29/18	EC - Field		=	586.8		1	µS/cm		Field		
SE68	SC-RAIN	11/29/18	EC - Field		=	9.6		1	µS/cm		Field		
SE69	NE-RAIN	12/17/18	EC - Field		=	2		1	µS/cm		Field		
SE69	NW-RAIN	12/16/18	EC - Field		=	4		1	µS/cm		Field		
SE69	SC-1	12/16/18	EC - Field		=	76.9		1	µS/cm		Field		
SE69	SC-1R	12/16/18	EC - Field		=	320.8		1	µS/cm		Field		

Event	Site Code	Date Sampled	1 Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-55	12/16/18	EC - Field		=	74		1	µS/cm		Field		
SE69	SC-55R	12/16/18	EC - Field		=	385		1	µS/cm		Field		
SE69	SC-56	12/16/18	EC - Field		=	67		1	µS/cm		Field		
SE69	SC-56R	12/16/18	EC - Field		=	667		1	µS/cm		Field		
SE69	SC-RAIN	12/16/18	EC - Field		=	5.4		1	µS/cm		Field		
SE70	NE-RAIN	5/16/19	EC - Field		=	9.6		1	µS/cm		Field		
SE70	NW-RAIN	5/16/19	EC - Field		=	9.5		1	µS/cm		Field		
SE70	SC-1	5/15/19	EC - Field		=	134.7		1	µS/cm		Field		
SE70	SC-1R	5/15/19	EC - Field		=	388.2		1	µS/cm		Field		
SE70	SC-55	5/15/19	EC - Field		=	282.7		1	µS/cm		Field		
SE70	SC-55R	5/15/19	EC - Field		=	314.7		1	µS/cm		Field		
SE70	SC-56	5/15/19	EC - Field		=	462.5		1	µS/cm		Field		
SE70	SC-56R	5/15/19	EC - Field		=	249.7		1	µS/cm		Field		
SE70	SC-RAIN	5/16/19	EC - Field		=	10.7		1	µS/cm		Field		
DW35	SC-1	9/24/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	9/25/17	9/25/18
DW35	SC-1R	9/24/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	9/25/18	9/25/18
DW36	SC-1	1/30/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	2/5/19	2/5/19
DW36	SC-1R	1/30/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	2/5/19	2/5/19
DW37	SC-1	3/18/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	3/20/19	3/20/19
DW37	SC-1R	3/18/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	3/20/19	3/20/19
DW38	SC-1	6/19/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	6/26/19	6/26/19
DW38	SC-1R	6/19/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	ND, U	FGL Env.	6/26/19	6/26/19
SE68	SC-1	11/29/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/19/18	12/19/18
SE69	SC-1R	12/16/18	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	12/19/18	12/19/18
SE70	SC-1	5/15/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/21/19	5/21/19
SE70	SC-1R	5/15/19	Hydroxide	2320B	<	1.1	1.1	10	mg/L	U, ND	FGL Env.	5/21/19	5/21/19
DW35	SC-1	9/24/18	Nitrogen, Total Kjeldahl	EPA351.2	=	0.855	0.32	0.5	mg/L	1b	FGL Env.	10/2/18	10/2/18
DW35	SC-1R	9/24/18	Nitrogen, Total Kjeldahl	EPA351.2	=	0.917	0.32	0.5	mg/L		FGL Env.	10/3/18	10/4/18
DW36	SC-1	1/30/19	Nitrogen, Total Kjeldahl	EPA351.2	<	0.32	0.32	0.5	mg/L	ND, Ub	FGL Env.	2/1/19	2/4/19
DW36	SC-1R	1/30/19	Nitrogen, Total Kjeldahl	EPA351.2	<	0.32	0.32	0.5	mg/L	ND, Ub	FGL Env.	2/1/19	2/4/19
DW37	SC-1	3/18/19	Nitrogen, Total Kjeldahl	EPA351.2	<	0.32	0.32	0.5	mg/L	ND, U	FGL Env.	3/20/19	3/22/19
DW37	SC-1R	3/18/19	Nitrogen, Total Kjeldahl	EPA351.2	=	0.576	0.32	0.5	mg/L		FGL Env.	3/20/19	3/22/19
DW38	SC-1	6/19/19	Nitrogen, Total Kjeldahl	EPA351.2	=	0.353	0.32	0.5	mg/L	J	FGL Env.	6/25/19	6/27/19
DW38	SC-1R	6/19/19	Nitrogen, Total Kjeldahl	EPA351.2	=	0.619	0.32	0.5	mg/L		FGL Env.	6/25/19	6/27/19
SE68	SC-1	11/29/18	Nitrogen, Total Kjeldahl	EPA351.2	=	1.71	0.32	0.5	mg/L	1	FGL Env.	12/4/18	12/4/18
SE68	SC-1R	11/29/18	Nitrogen, Total Kjeldahl	EPA351.2	=	0.471	0.32	0.5	mg/L	J1	FGL Env.	12/4/18	12/4/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-1	12/16/18	Nitrogen, Total Kjeldahl	EPA351.2	=	1.23	0.32	0.5	mg/L		FGL Env.	12/19/18	12/20/18
SE69	SC-1R	12/16/18	Nitrogen, Total Kjeldahl	EPA351.2	=	0.905	0.32	0.5	mg/L		FGL Env.	12/19/18	12/20/18
SE70	SC-1	5/15/19	Nitrogen, Total Kjeldahl	EPA351.2	=	3.78	0.32	0.5	mg/L		FGL Env.	5/21/19	5/22/19
SE70	SC-1R	5/15/19	Nitrogen, Total Kjeldahl	EPA351.2	=	3.05	0.32	0.5	mg/L		FGL Env.	5/21/19	5/22/19
DW35	SC-1	9/24/18	Solids, Total Suspended (TSS)	2540D	=	23.7	0.019	2	mg/L	f	FGL Env.	9/24/18	9/25/18
DW35	SC-1R	9/24/18	Solids, Total Suspended (TSS)	2540D	=	21.3	0.019	2	mg/L	f	FGL Env.	9/24/18	9/25/18
DW36	SC-1	1/30/19	Solids, Total Suspended (TSS)	2540D	=	7.62	0.019	1.1	mg/L		FGL Env.	1/30/19	1/31/19
DW36	SC-1R	1/30/19	Solids, Total Suspended (TSS)	2540D	=	10.1	0.019	1.3	mg/L		FGL Env.	1/30/19	1/31/19
DW37	SC-1	3/18/19	Solids, Total Suspended (TSS)	2540D	=	1.5	0.019	1.1	mg/L	fb	FGL Env.	3/19/19	3/20/19
DW37	SC-1R	3/18/19	Solids, Total Suspended (TSS)	2540D	=	20.6	0.019	5.6	mg/L	fb	FGL Env.	3/19/19	3/20/19
DW38	SC-1	6/19/19	Solids, Total Suspended (TSS)	2540D	=	6.97	0.019	1.1	mg/L	b	FGL Env.	6/19/19	6/20/19
DW38	SC-1R	6/19/19	Solids, Total Suspended (TSS)	2540D	=	18.3	0.019	2.4	mg/L	b	FGL Env.	6/19/19	6/20/19
SE68	SC-1	11/29/18	Solids, Total Suspended (TSS)	2540D	=	69.4	0.019	5	mg/L	b	FGL Env.	11/30/18	12/1/18
SE68	SC-1R	11/29/18	Solids, Total Suspended (TSS)	2540D	=	13.1	0.019	2.2	mg/L	b	FGL Env.	11/30/18	12/1/18
SE69	SC-1	12/16/18	Solids, Total Suspended (TSS)	2540D	=	44.7	0.019	3.3	mg/L	b	FGL Env.	12/17/18	12/18/18
SE69	SC-1R	12/16/18	Solids, Total Suspended (TSS)	2540D	=	17.4	0.019	1.8	mg/L	b	FGL Env.	12/17/18	12/18/18
SE70	SC-1	5/15/19	Solids, Total Suspended (TSS)	2540D	=	52.7	0.019	6.7	mg/L		FGL Env.	5/16/19	5/17/19
SE70	SC-1R	5/15/19	Solids, Total Suspended (TSS)	2540D	=	43.6	0.019	10	mg/L		FGL Env.	5/16/19	5/17/19
DW35	SC-1	9/24/18	Specific Conductance	2510B	=	962	0.16	1	umhos/cm	b	FGL Env.	9/26/18	9/26/18
DW35	SC-1R	9/24/18	Specific Conductance	2510B	=	947	0.16	1	umhos/cm	b	FGL Env.	9/26/18	9/26/18
DW36	SC-1	1/30/19	Specific Conductance	2510B	=	1010	0.16	1	umhos/cm		FGL Env.	2/4/19	2/4/19
DW36	SC-1R	1/30/19	Specific Conductance	2510B	=	401	0.16	1	umhos/cm		FGL Env.	2/4/19	2/4/19
DW37	SC-1	3/18/19	Specific Conductance	2510B	=	780	0.16	1	umhos/cm	b	FGL Env.	3/20/19	3/20/19
DW37	SC-1R	3/18/19	Specific Conductance	2510B	=	265	0.16	1	umhos/cm	b	FGL Env.	3/20/19	3/20/19
DW38	SC-1	6/19/19	Specific Conductance	2510B	=	524	0.16	1	umhos/cm		FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Specific Conductance	2510B	=	213	0.16	1	umhos/cm		FGL Env.	6/25/19	6/25/19
SE68	SC-1	11/29/18	Specific Conductance	2510B	=	61.1	0.16	1	umhos/cm	b	FGL Env.	12/3/18	12/3/18
SE68	SC-1R	11/29/18	Specific Conductance	2510B	=	263	0.16	1	umhos/cm	b	FGL Env.	12/3/18	12/3/18
SE69	SC-1	12/16/18	Specific Conductance	2510B	=	60.5	0.16	1	umhos/cm		FGL Env.	12/19/18	12/19/18
SE69	SC-1R	12/16/18	Specific Conductance	2510B	=	344	0.16	1	umhos/cm		FGL Env.	12/19/18	12/19/18
SE70	SC-1	5/15/19	Specific Conductance	2510B	=	130	0.16	1	umhos/cm		FGL Env.	5/17/19	5/17/19
SE70	SC-1R	5/15/19	Specific Conductance	2510B	=	409	0.16	1	umhos/cm		FGL Env.	5/17/19	5/17/19
DW35	SC-1	9/24/18	TOC	5310C	=	1.73	0.15	0.5	mg/L		FGL Env.	9/27/18	9/27/18
DW35	SC-1R	9/24/18	TOC	5310C	=	2.16	0.15	0.5	mg/L		FGL Env.	9/27/18	9/27/18
DW36	SC-1	1/30/19	TOC	5310C	=	1.01	0.15	0.5	mg/L		FGL Env.	2/4/19	2/4/19
DW36	SC-1R	1/30/19	TOC	5310C	=	2.53	0.15	0.5	mg/L		FGL Env.	2/4/19	2/5/19
DW37	SC-1	3/18/19	TOC	5310C	=	1.3	0.15	0.5	mg/L		FGL Env.	4/1/19	4/1/19
DW37	SC-1R	3/18/19	TOC	5310C	=	3.58	0.15	0.5	mg/L		FGL Env.	4/1/19	4/1/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW38	SC-1	6/19/19	TOC	5310C	=	3.49	0.15	0.5	mg/L	В	FGL Env.	7/15/19	7/15/19
DW38	SC-1R	6/19/19	TOC	5310C	=	4.42	0.15	0.5	mg/L	В	FGL Env.	7/15/19	7/15/19
SE68	SC-1	11/29/18	TOC	5310C	=	14.6	0.15	0.5	mg/L		FGL Env.	12/3/18	12/4/18
SE68	SC-1R	11/29/18	TOC	5310C	=	5.96	0.15	0.5	mg/L		FGL Env.	12/3/18	12/4/18
SE69	SC-1	12/16/18	TOC	5310C	=	16.7	0.15	0.5	mg/L		FGL Env.	12/24/18	12/24/18
SE69	SC-1R	12/16/18	TOC	5310C	=	7.49	0.15	0.5	mg/L		FGL Env.	12/24/18	12/24/18
SE70	SC-1	5/15/19	TOC	5310C	=	26.6	0.15	0.5	mg/L		FGL Env.	5/28/19	5/28/19
SE70	SC-1R	5/15/19	TOC	5310C	=	3.55	0.15	0.5	mg/L		FGL Env.	5/28/19	5/28/19
DW35	SC-1	9/24/18	Total Dissolved Solids (TFR)	2540CE	=	538	5.8	20	mg/L	b	FGL Env.	9/26/18	9/27/18
DW35	SC-1R	9/24/18	Total Dissolved Solids (TFR)	2540CE	=	518	5.8	20	mg/L	b	FGL Env.	9/26/18	9/27/18
DW36	SC-1	1/30/19	Total Dissolved Solids (TFR)	2540CE	=	635	5.8	20	mg/L		FGL Env.	2/1/19	2/4/19
DW36	SC-1R	1/30/19	Total Dissolved Solids (TFR)	2540CE	=	175	5.8	20	mg/L		FGL Env.	2/1/19	2/4/19
DW37	SC-1	3/18/19	Total Dissolved Solids (TFR)	2540CE	=	499	5.8	20	mg/L		FGL Env.	3/20/19	3/21/19
DW37	SC-1R	3/18/19	Total Dissolved Solids (TFR)	2540CE	=	143	5.8	20	mg/L		FGL Env.	3/20/19	3/21/19
DW38	SC-1	6/19/19	Total Dissolved Solids (TFR)	2540CE	=	300	5.8	20	mg/L	b	FGL Env.	6/21/19	6/24/19
DW38	SC-1R	6/19/19	Total Dissolved Solids (TFR)	2540CE	=	108	5.8	20	mg/L	b	FGL Env.	6/21/19	6/24/19
SE68	SC-1	11/29/18	Total Dissolved Solids (TFR)	2540C	=	50.2	5.8	20	mg/L		FGL Env.	12/3/18	12/4/18
SE68	SC-1R	11/29/18	Total Dissolved Solids (TFR)	2540C	=	117	5.8	20	mg/L	lb	FGL Env.	12/3/18	12/4/18
SE69	SC-1	12/16/18	Total Dissolved Solids (TFR)	2540C	=	52.4	5.8	11	mg/L		FGL Env.	12/19/18	12/20/18
SE69	SC-1R	12/16/18	Total Dissolved Solids (TFR)	2540C	=	181	5.8	20	mg/L		FGL Env.	12/19/18	12/20/18
SE70	SC-1	5/15/19	Total Dissolved Solids (TFR)	2540C	=	83.7	5.8	20	mg/L	b	FGL Env.	5/17/19	5/20/19
SE70	SC-1R	5/15/19	Total Dissolved Solids (TFR)	2540C	=	218	5.8	20	mg/L	b	FGL Env.	5/17/19	5/20/19
DW35	SC-1	9/24/18	Total Hardness as CaCO3	3010	=	275	0.018	2.5	mg/L	1	FGL Env.	10/1/17	10/2/18
DW35	SC-1R	9/24/18	Total Hardness as CaCO3	3010	=	156	0.018	2.5	mg/L	Р	FGL Env.	9/26/18	10/2/18
DW36	SC-1	1/30/19	Total Hardness as CaCO3	3010	=	312	0.018	2.5	mg/L	h	FGL Env.	2/1/19	2/2/19
DW36	SC-1R	1/30/19	Total Hardness as CaCO3	3010	=	87.3	0.018	2.5	mg/L	h	FGL Env.	2/1/19	2/2/19
DW37	SC-1	3/18/19	Total Hardness as CaCO3	3010	=	262	0.018	2.5	mg/L		FGL Env.	3/27/19	3/29/19
DW37	SC-1R	3/18/19	Total Hardness as CaCO3	3010	=	83.1	0.018	2.5	mg/L		FGL Env.	3/27/19	3/29/19
DW38	SC-1	6/19/19	Total Hardness as CaCO3	3010	=	165	0.018	2.5	mg/L	Р	FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Total Hardness as CaCO3	3010	=	63.7	0.018	2.5	mg/L	Р	FGL Env.	6/27/19	6/27/19
SE68	SC-1	11/29/18	Total Hardness as CaCO3	200.7	=	28.9	0.018	2.5	mg/L		FGL Env.	12/5/18	12/6/18
SE68	SC-1R	11/29/18	Total Hardness as CaCO3	200.7	=	56.5	0.018	2.5	mg/L		FGL Env.	12/5/18	12/6/18
SE69	SC-1	12/16/18	Total Hardness as CaCO3	200.7	=	20.9	0.018	2.5	mg/L		FGL Env.	12/28/18	12/29/18
SE69	SC-1R	12/16/18	Total Hardness as CaCO3	200.7	=	71.7	0.018	2.5	mg/L		FGL Env.	12/28/18	12/29/18
SE70	SC-1	5/15/19	Total Hardness as CaCO3	200.7	=	49.2	0.018	2.5	mg/L		FGL Env.	5/20/19	5/22/19
SE70	SC-1R	5/15/19	Total Hardness as CaCO3	200.7	=	120	0.018	2.5	mg/L		FGL Env.	5/20/19	5/22/19
DW35	SC-1	9/24/18	Turbidity	2130B	=	9.28	0.021	0.2	NTU		FGL Env.	9/24/18	9/24/18
DW35	SC-1R	9/24/18	Turbidity	2130B	=	12.7	0.021	0.2	NTU		FGL Env.	9/24/18	9/24/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW36	SC-1	1/30/19	Turbidity	2130B	=	1.64	0.021	0.2	NTU		FGL Env.	1/30/19	1/30/19
DW36	SC-1R	1/30/19	Turbidity	2130B	=	6.23	0.021	0.2	NTU		FGL Env.	1/30/19	1/30/19
DW37	SC-1	3/18/19	Turbidity	2130B	=	1.18	0.021	0.2	NTU		FGL Env.	3/18/19	3/18/19
DW37	SC-1R	3/18/19	Turbidity	2130B	=	8.59	0.021	0.2	NTU		FGL Env.	3/18/19	3/18/19
DW38	SC-1	6/19/19	Turbidity	2130B	=	4.66	0.048	0.2	NTU		FGL Env.	6/20/19	6/20/19
DW38	SC-1R	6/19/19	Turbidity	2130B	=	11.6	0.048	0.2	NTU		FGL Env.	6/20/19	6/20/19
SE68	SC-1	11/29/18	Turbidity	2130B	=	58.1	0.021	0.2	NTU		FGL Env.	11/29/18	11/29/18
SE68	SC-1R	11/29/18	Turbidity	2130B	=	9.38	0.021	0.2	NTU		FGL Env.	11/29/18	11/29/18
SE69	SC-1	12/16/18	Turbidity	2130B	=	36.5	0.021	0.2	NTU		FGL Env.	12/17/18	12/17/18
SE69	SC-1R	12/16/18	Turbidity	2130B	=	16	0.021	0.2	NTU		FGL Env.	12/17/18	12/17/18
SE70	SC-1	5/15/19	Turbidity	2130B	=	52.4	0.021	0.2	NTU		FGL Env.	5/16/19	5/16/19
SE70	SC-1R	5/15/19	Turbidity	2130B	=	29	0.021	0.2	NTU		FGL Env.	5/16/19	5/16/19
DW35	SC-1	9/24/18	Mercury	EPA 1631E	=	1	0.2	0.5	ng/L		Caltest	10/3/18	10/4/18
DW35	SC-1R	9/24/18	Mercury	EPA 1631E	=	1.8	0.2	0.5	ng/L		Caltest	10/3/18	10/4/18
DW35	SC-55	9/24/18	Mercury	EPA 1631E	=	22	0.2	0.5	ng/L		Caltest	10/3/18	10/4/18
DW35	SC-55R	9/24/18	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	10/3/18	10/4/18
DW35	SC-56	9/24/18	Mercury	EPA 1631E	=	49	0.4	0.8	ng/L		Caltest	10/3/18	10/4/18
DW35	SC-56R	9/24/18	Mercury	EPA 1631E	=	0.86	0.2	0.5	ng/L		Caltest	10/3/18	10/4/18
DW36	SC-1	1/30/19	Mercury	EPA 1631E	=	830	0.2	0.5	ng/L	BJ	Caltest	2/4/19	2/5/19
DW36	SC-1R	1/30/19	Mercury	EPA 1631E	=	1300	0.2	0.5	ng/L	BJ	Caltest	2/4/19	2/5/19
DW36	SC-55	1/30/19	Mercury	EPA 1631E	=	76	0.4	0.8	ng/L		Caltest	2/4/19	2/5/19
DW36	SC-55R	1/30/19	Mercury	EPA 1631E	=	1.7	0.2	0.5	ng/L		Caltest	2/4/19	2/5/19
DW36	SC-56	1/30/19	Mercury	EPA 1631E	=	8	0.2	0.5	ng/L		Caltest	2/4/19	2/5/19
DW36	SC-56R	1/30/19	Mercury	EPA 1631E	=	2.6	0.2	0.5	ng/L		Caltest	2/4/19	2/5/19
DW37	SC-1	3/18/19	Mercury	EPA 1631E	=	5.3	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW37	SC-1R	3/18/19	Mercury	EPA 1631E	=	3.3	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW37	SC-55	3/18/19	Mercury	EPA 1631E	=	6.4	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW37	SC-55R	3/18/19	Mercury	EPA 1631E	=	2.6	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW37	SC-56	3/18/19	Mercury	EPA 1631E	=	6.5	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW37	SC-56R	3/18/19	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	3/28/19	3/29/19
DW38	SC-1	6/19/19	Mercury	EPA 1631E	=	2.1	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
DW38	SC-1R	6/19/19	Mercury	EPA 1631E	=	1.6	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
DW38	SC-55	6/19/19	Mercury	EPA 1631E	=	77	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
DW38	SC-55R	6/19/19	Mercury	EPA 1631E	=	1.8	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
DW38	SC-56	6/19/19	Mercury	EPA 1631E	=	2.6	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
DW38	SC-56R	6/19/19	Mercury	EPA 1631E	=	1.6	0.2	0.5	ng/L		Caltest	7/2/19	7/3/19
SE68	NE-RAIN	11/29/18	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	NW-RAIN	11/29/18	Mercury	EPA 1631E	=	1.3	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	SC-1	11/29/18	Mercury	EPA 1631E	=	7	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-1R	11/29/18	Mercury	EPA 1631E	=	3.9	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-55	11/29/18	Mercury	EPA 1631E	=	11	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-55R	11/29/18	Mercury	EPA 1631E	=	8.7	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-56	11/29/18	Mercury	EPA 1631E	=	15	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-56R	11/29/18	Mercury	EPA 1631E	=	1.8	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE68	SC-RAIN	11/29/18	Mercury	EPA 1631E	=	1.8	0.2	0.5	ng/L		Caltest	12/3/18	12/4/18
SE69	NE-RAIN	12/17/18	Mercury	EPA 1631E	=	2.2	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	NW-RAIN	12/16/18	Mercury	EPA 1631E	=	2.6	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-1	12/16/18	Mercury	EPA 1631E	=	8.3	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-1R	12/16/18	Mercury	EPA 1631E	=	3.8	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-55	12/16/18	Mercury	EPA 1631E	=	17	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-55R	12/16/18	Mercury	EPA 1631E	=	2.3	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-56	12/16/18	Mercury	EPA 1631E	=	8.7	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-56R	12/16/18	Mercury	EPA 1631E	=	1.6	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-RAIN	12/16/18	Mercury	EPA 1631E	=	3.4	0.2	0.5	ng/L		Caltest	12/26/18	12/27/18
SE70	NE-RAIN	5/16/19	Mercury	EPA 1631E	=	4.6	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	NW-RAIN	5/16/19	Mercury	EPA 1631E	=	3.2	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-1	5/15/19	Mercury	EPA 1631E	=	21	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-1R	5/15/19	Mercury	EPA 1631E	=	5.4	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-55	5/15/19	Mercury	EPA 1631E	=	20	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-55R	5/15/19	Mercury	EPA 1631E	=	24	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-56	5/15/19	Mercury	EPA 1631E	=	13	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-56R	5/15/19	Mercury	EPA 1631E	=	3.3	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
SE70	SC-RAIN	5/16/19	Mercury	EPA 1631E	=	3.5	0.2	0.5	ng/L		Caltest	5/27/19	5/28/19
DW35	SC-1	9/24/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	10/3/18	10/4/18
DW35	SC-1R	9/24/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	10/4/18	10/4/18
DW35	SC-55	9/24/18	Methyl Mercury	EPA 1630	=	110	20	50	ng/L		Caltest	10/4/18	10/4/18
DW35	SC-55R	9/24/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	10/4/18	10/4/18
DW35	SC-56	9/24/18	Methyl Mercury	EPA 1630	=	320	20	50	ng/L		Caltest	10/4/18	10/4/18
DW35	SC-56R	9/24/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	10/4/18	10/4/18
DW36	SC-1	1/30/19	Methyl Mercury	EPA 1630	=	20	20	50	ng/L	J	Caltest	2/6/19	2/6/19
DW36	SC-1R	1/30/19	Methyl Mercury	EPA 1630	=	40	20	50	ng/L	J	Caltest	2/6/19	2/6/19
DW36	SC-55	1/30/19	Methyl Mercury	EPA 1630	=	100	20	50	ng/L		Caltest	2/6/19	2/6/19
DW36	SC-55R	1/30/19	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	2/6/19	2/6/19
DW36	SC-56	1/30/19	Methyl Mercury	EPA 1630	=	80	20	50	ng/L		Caltest	2/6/19	2/6/19
DW36	SC-56R	1/30/19	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	2/6/19	2/6/19
DW37	SC-1	3/18/19	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	3/29/19	3/29/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW37	SC-1R	3/18/19	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	3/29/19	3/29/19
DW37	SC-55	3/18/19	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	3/29/19	3/29/19
DW37	SC-55R	3/18/19	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	3/29/19	3/29/19
DW37	SC-56	3/18/19	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	3/29/19	3/29/19
DW37	SC-56R	3/18/19	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	3/29/19	3/29/19
DW38	SC-1	6/19/19	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	6/25/19	6/25/19
DW38	SC-1R	6/19/19	Methyl Mercury	EPA 1630	=	40	20	50	ng/L	J	Caltest	6/25/19	6/25/19
DW38	SC-55	6/19/19	Methyl Mercury	EPA 1630	=	1000	20	50	ng/L		Caltest	6/25/19	6/25/19
DW38	SC-55R	6/19/19	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	6/25/19	6/25/19
DW38	SC-56	6/19/19	Methyl Mercury	EPA 1630	=	140	20	50	ng/L		Caltest	6/25/19	6/25/19
DW38	SC-56R	6/19/19	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	6/25/19	6/25/19
SE68	NE-RAIN	11/29/18	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	12/4/18	12/6/18
SE68	NW-RAIN	11/29/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	12/4/18	12/6/18
SE68	SC-1	11/29/18	Methyl Mercury	EPA 1630	<	20	20	50	ng/L	ND	Caltest	12/4/18	12/6/18
SE68	SC-1R	11/29/18	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	12/4/18	12/6/18
SE68	SC-55	11/29/18	Methyl Mercury	EPA 1630	=	90	20	50	ng/L		Caltest	12/4/18	12/6/18
SE68	SC-55R	11/29/18	Methyl Mercury	EPA 1630	=	90	20	50	ng/L		Caltest	12/4/18	12/6/18
SE68	SC-56	11/29/18	Methyl Mercury	EPA 1630	=	150	20	50	ng/L		Caltest	12/4/18	12/6/18
SE68	SC-56R	11/29/18	Methyl Mercury	EPA 1630	=	30	20	50	ng/L	J	Caltest	12/4/18	12/6/18
SE68	SC-RAIN	11/29/18	Methyl Mercury	EPA 1630	=	30	20	50	ng/L	J	Caltest	12/4/18	12/6/18
SE69	NE-RAIN	12/17/18	Methyl Mercury	EPA 1630	=	40	20	50	ng/L	J	Caltest	12/26/18	12/27/18
SE69	NW-RAIN	12/16/18	Methyl Mercury	EPA 1630	=	30	20	50	ng/L	J	Caltest	12/26/18	12/27/18
SE69	SC-1	12/16/18	Methyl Mercury	EPA 1630	=	90	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-1R	12/16/18	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-55	12/16/18	Methyl Mercury	EPA 1630	=	100	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-55R	12/16/18	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-56	12/16/18	Methyl Mercury	EPA 1630	=	120	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-56R	12/16/18	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	12/26/18	12/27/18
SE69	SC-RAIN	12/16/18	Methyl Mercury	EPA 1630	=	30	20	50	ng/L	J	Caltest	12/26/18	12/27/18
SE70	NE-RAIN	5/16/19	Methyl Mercury	EPA 1630	=	40	20	50	ng/L	J	Caltest	5/29/19	5/29/19
SE70	NW-RAIN	5/16/19	Methyl Mercury	EPA 1630	=	70	20	50	ng/L		Caltest	5/29/19	5/29/19
SE70	SC-1	5/15/19	Methyl Mercury	EPA 1630	=	430	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-1R	5/15/19	Methyl Mercury	EPA 1630	=	60	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-55	5/15/19	Methyl Mercury	EPA 1630	=	160	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-55R	5/15/19	Methyl Mercury	EPA 1630	=	160	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-56	5/15/19	Methyl Mercury	EPA 1630	=	240	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-56R	5/15/19	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	5/20/19	5/20/19
SE70	SC-RAIN	5/16/19	Methyl Mercury	EPA 1630	=	50	20	50	ng/L		Caltest	5/29/19	5/29/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW35	SC-1	9/24/18	Aluminum, Dissolve	d 200.8	=	4.44	0.071	10	ug/L	J	FGL Env.	9/29/17	9/29/18
DW35	SC-1R	9/24/18	Aluminum, Dissolve	d 200.8	=	0.427	0.071	10	ug/L	J	FGL Env.	9/29/18	9/29/18
DW36	SC-1	1/30/19	Aluminum, Dissolve	d 200.8	=	1.09	0.1	10	ug/L	J	FGL Env.	2/1/19	2/2/19
DW36	SC-1R	1/30/19	Aluminum, Dissolve	d 200.8	=	6.13	0.1	10	ug/L	J	FGL Env.	2/1/19	2/2/19
DW37	SC-1	3/18/19	Aluminum, Dissolve	d 200.8	=	4.9	0.1	10	ug/L	J	FGL Env.	3/25/19	3/25/19
DW37	SC-1R	3/18/19	Aluminum, Dissolve	d 200.8	=	1.25	0.1	10	ug/L	J	FGL Env.	3/25/19	3/25/19
DW38	SC-1	6/19/19	Aluminum, Dissolve	d 200.8	=	6.9	6.8	10	ug/L	J1	FGL Env.	6/25/19	6/25/19
DW38	SC-1R	6/19/19	Aluminum, Dissolve	d 200.8	<	6.8	6.8	10	ug/L	ND, U1	FGL Env.	6/25/19	6/25/19
SE68	SC-1	11/29/18	Aluminum, Dissolve	d 200.8	=	30.7	0.1	20	ug/L	h	FGL Env.	12/5/18	12/5/18
SE68	SC-1R	11/29/18	Aluminum, Dissolve	d 200.8	=	4.52	0.1	20	ug/L	Jh	FGL Env.	12/5/18	12/5/18
SE69	SC-1	12/16/18	Aluminum, Dissolve	d 200.8	=	18.9	0.1	10	ug/L		FGL Env.	12/24/18	12/26/18
SE69	SC-1R	12/16/18	Aluminum, Dissolve	d 200.8	=	2.75	0.1	10	ug/L	J	FGL Env.	12/24/18	12/26/18
SE70	SC-1	5/15/19	Aluminum, Dissolve	d 200.8	=	22.2	6.8	10	ug/L	h	FGL Env.	5/23/19	5/23/19
SE70	SC-1R	5/15/19	Aluminum, Dissolve	d 200.8	<	6.8	6.8	10	ug/L	U, ND	FGL Env.	5/22/19	5/22/19
DW35	SC-1	9/24/18	Aluminum, Total	3010	=	78.6	0.05	10	ug/L	Р	FGL Env.	9/26/17	10/1/18
DW35	SC-1R	9/24/18	Aluminum, Total	3010	=	523	0.05	20	ug/L	Р	FGL Env.	9/26/18	10/2/18
DW36	SC-1	1/30/19	Aluminum, Total	3010	=	310	0.05	10	ug/L	Р	FGL Env.	2/4/19	2/7/19
DW36	SC-1R	1/30/19	Aluminum, Total	3010	=	149	0.05	10	ug/L	Р	FGL Env.	2/4/19	2/7/19
DW37	SC-1	3/18/19	Aluminum, Total	3010	=	93.8	0.05	10	ug/L	Р	FGL Env.	3/20/19	3/27/19
DW37	SC-1R	3/18/19	Aluminum, Total	3010	=	323	0.05	10	ug/L	Р	FGL Env.	3/20/19	3/27/19
DW38	SC-1	6/19/19	Aluminum, Total	3010	=	171	0.05	200	ug/L	JP	FGL Env.	6/27/19	7/4/19
DW38	SC-1R	6/19/19	Aluminum, Total	3010	=	570	0.05	200	ug/L	Р	FGL Env.	6/27/19	7/4/19
SE68	SC-1	11/29/18	Aluminum, Total	200.8	=	3610	0.05	250	ug/L	1P	FGL Env.	12/6/18	12/10/18
SE68	SC-1R	11/29/18	Aluminum, Total	200.8	=	558	0.05	50	ug/L	1P	FGL Env.	12/6/18	12/10/18
SE69	SC-1	12/16/18	Aluminum, Total	200.8	=	1590	0.05	100	ug/L	hP	FGL Env.	1/3/19	1/14/19
SE69	SC-1R	12/16/18	Aluminum, Total	200.8	=	198	0.05	50	ug/L	hP	FGL Env.	1/3/19	1/14/19
SE70	SC-1	5/15/19	Aluminum, Total	200.8	=	2880	0.05	100	ug/L	Р	FGL Env.	5/20/19	5/30/19
SE70	SC-1R	5/15/19	Aluminum, Total	200.8	=	1230	0.05	50	ug/L	Р	FGL Env.	5/20/19	5/30/19
DW35	SC-1	9/24/18	Copper, Dissolved	200.8	=	8.02	0.038	1	ug/L		FGL Env.	9/29/17	9/29/18
DW35	SC-1R	9/24/18	Copper, Dissolved	200.8	=	7.99	0.38	1	ug/L		FGL Env.	9/29/18	9/29/18
DW36	SC-1	1/30/19	Copper, Dissolved	200.8	=	1.76	0.066	1	ug/L		FGL Env.	2/1/19	2/2/19
DW36	SC-1R	1/30/19	Copper, Dissolved	200.8	=	1.6	0.066	1	ug/L		FGL Env.	2/1/19	2/2/19
DW37	SC-1	3/18/19	Copper, Dissolved	200.8	=	1.38	0.066	1	ug/L		FGL Env.	3/25/19	3/25/19
DW37	SC-1R	3/18/19	Copper, Dissolved	200.8	=	1.56	0.066	1	ug/L		FGL Env.	3/25/19	3/25/19
DW38	SC-1	6/19/19	Copper, Dissolved	200.8	=	1.52	0.34	1	ug/L	1	FGL Env.	6/25/19	6/25/19
DW38	SC-1R	6/19/19	Copper, Dissolved	200.8	=	1.26	0.34	1	ug/L	1	FGL Env.	6/25/19	6/25/19
SE68	SC-1	11/29/18	Copper, Dissolved	200.8	=	5.44	0.066	1	ug/L	1	FGL Env.	12/3/18	12/4/18
SE68	SC-1R	11/29/18	Copper, Dissolved	200.8	=	3.84	0.066	1	ug/L	1	FGL Env.	12/3/18	12/4/18

Event	Site Code	Date Sampled	I Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-1	12/16/18	Copper, Dissolved	200.8	=	4.84	0.066	1	ug/L		FGL Env.	12/24/18	12/26/18
SE69	SC-1R	12/16/18	Copper, Dissolved	200.8	=	2.58	0.066	1	ug/L		FGL Env.	12/24/18	12/26/18
SE70	SC-1	5/15/19	Copper, Dissolved	200.8	=	9.62	0.34	1	ug/L		FGL Env.	5/22/19	5/22/19
SE70	SC-1R	5/15/19	Copper, Dissolved	200.8	=	1.48	0.34	1	ug/L		FGL Env.	5/22/19	5/22/19
DW35	SC-1	9/24/18	Copper, Total	3010	=	3.15	0.071	1	ug/L		FGL Env.	9/26/17	10/1/18
DW35	SC-1R	9/24/18	Copper, Total	3010	=	3.67	0.071	1	ug/L		FGL Env.	9/26/18	10/1/18
DW36	SC-1	1/30/19	Copper, Total	3010	=	4.21	0.071	1	ug/L		FGL Env.	2/4/19	2/7/19
DW36	SC-1R	1/30/19	Copper, Total	3010	=	2.88	0.071	1	ug/L		FGL Env.	2/4/19	2/7/19
DW37	SC-1	3/18/19	Copper, Total	3010	=	3.76	0.071	1	ug/L		FGL Env.	3/20/19	3/27/19
DW37	SC-1R	3/18/19	Copper, Total	3010	=	3.96	0.071	1	ug/L		FGL Env.	3/20/19	3/27/19
DW38	SC-1	6/19/19	Copper, Total	3010	=	6.42	0.012	5	ug/L		FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Copper, Total	3010	=	5.46	0.012	5	ug/L		FGL Env.	6/27/19	6/27/19
SE68	SC-1	11/29/18	Copper, Total	200.8	=	43.9	0.071	2	ug/L		FGL Env.	12/6/18	12/8/18
SE68	SC-1R	11/29/18	Copper, Total	200.8	=	5.42	0.071	1	ug/L		FGL Env.	12/6/18	12/6/18
SE69	SC-1	12/16/18	Copper, Total	200.8	=	14.8	0.071	1	ug/L		FGL Env.	1/3/19	1/13/19
SE69	SC-1R	12/16/18	Copper, Total	200.8	=	6.89	0.071	1	ug/L		FGL Env.	1/3/19	1/13/19
SE70	SC-1	5/15/19	Copper, Total	200.8	=	34.7	0.071	1	ug/L	Р	FGL Env.	5/20/19	5/28/19
SE70	SC-1R	5/15/19	Copper, Total	200.8	=	5.74	0.071	1	ug/L	Р	FGL Env.	5/20/19	5/28/19
DW35	SC-1	9/24/18	Iron, Total	3010	=	124	1.4	50	ug/L		FGL Env.	10/1/17	10/2/18
DW35	SC-1R	9/24/18	Iron, Total	3010	=	791	1.4	50	ug/L		FGL Env.	9/26/18	10/2/18
DW36	SC-1	1/30/19	Iron, Total	3010	=	550	1.4	50	ug/L	h	FGL Env.	2/1/19	2/2/19
DW36	SC-1R	1/30/19	Iron, Total	3010	=	579	1.4	50	ug/L	h	FGL Env.	2/1/19	2/2/19
DW37	SC-1	3/18/19	Iron, Total	3010	=	158	1.4	50	ug/L		FGL Env.	3/27/19	3/29/19
DW37	SC-1R	3/18/19	Iron, Total	3010	=	571	1.4	50	ug/L		FGL Env.	3/27/19	3/29/19
DW38	SC-1	6/19/19	Iron, Total	3010	=	180	1.4	50	ug/L		FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Iron, Total	3010	=	608	1.4	50	ug/L		FGL Env.	6/27/19	6/27/19
SE68	SC-1	11/29/18	Iron, Total	200.7	=	2680	1.4	50	ug/L		FGL Env.	12/5/18	12/6/18
SE68	SC-1R	11/29/18	Iron, Total	200.7	=	557	1.4	50	ug/L		FGL Env.	12/5/18	12/6/18
SE69	SC-1	12/16/18	Iron, Total	200.7	=	2000	1.4	50	ug/L		FGL Env.	12/28/18	12/29/18
SE69	SC-1R	12/16/18	Iron, Total	200.7	=	789	1.4	50	ug/L		FGL Env.	12/28/18	12/29/18
SE70	SC-1	5/15/19	Iron, Total	200.7	=	4000	1.4	50	ug/L		FGL Env.	5/20/19	5/22/19
SE70	SC-1R	5/15/19	Iron, Total	200.7	=	1550	1.4	50	ug/L		FGL Env.	5/20/19	5/22/19
DW35	SC-1	9/24/18	Lead, Dissolved	200.8	<	0.036	0.036	0.2	ug/L	ND, U	FGL Env.	9/29/17	9/29/18
DW35	SC-1R	9/24/18	Lead, Dissolved	200.8	<	0.36	0.36	0.2	ug/L	ND, U	FGL Env.	9/29/18	9/29/18
DW36	SC-1	1/30/19	Lead, Dissolved	200.8	=	0.015	0.015	0.2	ug/L	J	FGL Env.	2/1/19	2/2/19
DW36	SC-1R	1/30/19	Lead, Dissolved	200.8	=	0.071	0.015	0.2	ug/L	J	FGL Env.	2/1/19	2/2/19
DW37	SC-1	3/18/19	Lead, Dissolved	200.8	<	0.015	0.015	0.2	ug/L	ND, U	FGL Env.	3/25/19	3/25/19
DW37	SC-1R	3/18/19	Lead, Dissolved	200.8	=	0.027	0.015	0.2	ug/L	J	FGL Env.	3/25/19	3/25/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW38	SC-1	6/19/19	Lead, Dissolved	200.8	<	0.09	0.09	0.2	ug/L	ND, U1	FGL Env.	6/25/19	6/25/19
DW38	SC-1R	6/19/19	Lead, Dissolved	200.8	<	0.09	0.09	0.2	ug/L	ND	FGL Env.	6/25/19	6/25/19
SE68	SC-1	11/29/18	Lead, Dissolved	200.8	=	0.908	0.015	0.2	ug/L	1	FGL Env.	12/3/18	12/4/18
SE68	SC-1R	11/29/18	Lead, Dissolved	200.8	=	0.132	0.015	0.2	ug/L	J1	FGL Env.	12/3/18	12/4/18
SE69	SC-1	12/16/18	Lead, Dissolved	200.8	=	0.322	0.015	0.2	ug/L	J	FGL Env.	12/24/18	12/26/18
SE69	SC-1R	12/16/18	Lead, Dissolved	200.8	=	0.208	0.015	0.2	ug/L	J	FGL Env.	12/24/18	12/26/18
SE70	SC-1	5/15/19	Lead, Dissolved	200.8	=	0.577	0.09	0.2	ug/L		FGL Env.	5/22/19	5/22/19
SE70	SC-1R	5/15/19	Lead, Dissolved	200.8	<	0.09	0.09	0.2	ug/L	U, ND	FGL Env.	5/22/19	5/22/19
DW35	SC-1	9/24/18	Lead, Total	3010	=	0.769	0.013	0.2	ug/L		FGL Env.	9/26/17	10/1/18
DW35	SC-1R	9/24/18	Lead, Total	3010	=	2.59	0.013	0.2	ug/L		FGL Env.	9/26/18	10/1/18
DW36	SC-1	1/30/19	Lead, Total	3010	=	2.62	0.013	0.2	ug/L		FGL Env.	2/4/19	2/7/19
DW36	SC-1R	1/30/19	Lead, Total	3010	=	0.817	0.013	0.2	ug/L		FGL Env.	2/4/19	2/7/19
DW37	SC-1	3/18/19	Lead, Total	3010	=	1.1	0.013	0.2	ug/L		FGL Env.	3/20/19	3/27/19
DW37	SC-1R	3/18/19	Lead, Total	3010	=	1.78	0.013	0.2	ug/L		FGL Env.	3/20/19	3/27/19
DW38	SC-1	6/19/19	Lead, Total	3010	=	1.1	0.016	1	ug/L		FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Lead, Total	3010	=	2.2	0.016	1	ug/L		FGL Env.	6/27/19	6/27/19
SE68	SC-1	11/29/18	Lead, Total	200.8	=	15.7	0.013	0.4	ug/L		FGL Env.	12/6/18	12/8/18
SE68	SC-1R	11/29/18	Lead, Total	200.8	=	2.27	0.013	0.2	ug/L		FGL Env.	12/6/18	12/6/18
SE69	SC-1	12/16/18	Lead, Total	200.8	=	8	0.013	0.2	ug/L		FGL Env.	1/3/19	1/13/19
SE69	SC-1R	12/16/18	Lead, Total	200.8	=	3.42	0.013	0.2	ug/L		FGL Env.	1/3/19	1/13/19
SE70	SC-1	5/15/19	Lead, Total	200.8	=	21.3	0.013	0.2	ug/L		FGL Env.	5/20/19	5/28/19
SE70	SC-1R	5/15/19	Lead, Total	200.8	=	4.04	0.013	0.2	ug/L		FGL Env.	5/20/19	5/28/19
DW35	SC-1	9/24/18	Zinc, Total	3010	=	28.7	0.1	10	ug/L	Р	FGL Env.	9/26/17	10/1/18
DW35	SC-1R	9/24/18	Zinc, Total	3010	=	12.4	0.1	10	ug/L	Р	FGL Env.	9/26/18	10/1/18
DW36	SC-1	1/30/19	Zinc, Total	3010	=	51.1	0.1	10	ug/L		FGL Env.	2/4/19	2/7/19
DW36	SC-1R	1/30/19	Zinc, Total	3010	=	27.3	0.1	10	ug/L		FGL Env.	2/4/19	2/7/19
DW37	SC-1	3/18/19	Zinc, Total	3010	=	63.5	0.1	10	ug/L		FGL Env.	3/20/19	3/27/19
DW37	SC-1R	3/18/19	Zinc, Total	3010	=	38.6	0.1	10	ug/L		FGL Env.	3/20/19	3/27/19
DW38	SC-1	6/19/19	Zinc, Total	3010	=	72.8	0.11	50	ug/L	Р	FGL Env.	6/27/19	6/27/19
DW38	SC-1R	6/19/19	Zinc, Total	3010	=	67.9	0.11	50	ug/L	Р	FGL Env.	6/27/19	6/27/19
SE68	SC-1	11/29/18	Zinc, Total	200.8	=	295	0.1	250	ug/L		FGL Env.	12/6/18	12/10/18
SE68	SC-1R	11/29/18	Zinc, Total	200.8	=	26.4	0.1	10	ug/L		FGL Env.	12/6/18	12/6/18
SE69	SC-1	12/16/18	Zinc, Total	200.8	=	103	0.1	10	ug/L	Р	FGL Env.	1/3/19	1/13/19
SE69	SC-1R	12/16/18	Zinc, Total	200.8	=	49.4	0.1	10	ug/L	Р	FGL Env.	1/3/19	1/13/19
SE70	SC-1	5/15/19	Zinc, Total	200.8	=	231	0.1	10	ug/L	Р	FGL Env.	5/20/19	5/28/19
SE70	SC-1R	5/15/19	Zinc, Total	200.8	=	32.7	0.42	10	ug/L		FGL Env.	5/20/19	5/22/19
DW35	SC-1	9/24/18	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Chlorpyrifos	EPA 8270M_NCI	<	0.5	1	1	ng/L	ND	Caltest	9/25/18	10/5/18

Event	Site Code	Date Sampled	d Analyte	Analytical Me	ethod	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW35	SC-55	9/24/18	Chlorpyrifos	EPA 8270M	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Chlorpyrifos	EPA 8270M	_NCI	<	0.6	0.6	1.1	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Chlorpyrifos	EPA 8270M	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Chlorpyrifos	EPA 8270M_	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Chlorpyrifos	EPA 8270M	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Chlorpyrifos	EPA 8270M	NCI :	=	1.1	0.5	1	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Chlorpyrifos	EPA 8270M	NCI :	=	0.6	0.5	1	ng/L	J	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Chlorpyrifos	EPA 8270M_	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Chlorpyrifos	EPA 8270M_	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Chlorpyrifos	EPA 8270M	_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Chlorpyrifos	EPA 8270M	NCI :	=	0.5	0.5	1	ng/L	J	Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Chlorpyrifos	EPA 8270M	NCI ·	<	0.5	0.5	1	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	16	0.5	1	ng/L		Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	8.6	0.5	1	ng/L		Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	3.3	2	5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Chlorpyrifos	EPA 8270M	_NCI :	=	2.6	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	4.4	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	1.8	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	4.2	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	1	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Chlorpyrifos	EPA 8270M	NCI :	=	13	0.5	1	ng/L		Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Chlorpyrifos	EPA 8270M	NCI :	=	2.4	0.5	1	ng/L		Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Chlorpyrifos	EPA 8270M	NCI :	=	1.6	0.5	1	ng/L		Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Chlorpyrifos	EPA 8270M	NCI ·	<	2	2	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Chlorpyrifos	EPA 8270M	NCI	<	2	2	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Chlorpyrifos	EPA 8270M_	NCI	<	5	5	10	ng/L	ND	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Chlorpyrifos	EPA 8270M_	NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Chlorpyrifos	EPA 8270M_	_NCI	<	2	2	5	ng/L	ND	Caltest	12/19/18	1/1/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-56R	12/16/18	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Chlorpyrifos	EPA 8270M_NCI	=	0.9	0.5	1	ng/L	J	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Chlorpyrifos	EPA 8270M_NCI	=	0.8	0.5	1	ng/L	J	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	3	3	5.7	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Chlorpyrifos	EPA 8270M_NCI	<	0.5	0.5	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Chlorpyrifos	EPA 8270M_NCI	=	0.6	0.5	1	ng/L	J	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Allethrin	EPA 8270M_NCI	<	0.1	0.5	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Allethrin	EPA 8270M_NCI	<	0.1	0.5	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Allethrin	EPA 8270M_NCI	<	0.6	0.6	2.8	ng/L	ND, 1,2	Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	11/30/18	12/8/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	SC-1R	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Allethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND, 1	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Allethrin	EPA 8270M_NCI	<	0.6	0.6	2.8	ng/L	ND, 2,1	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Allethrin	EPA 8270M_NCI	<	0.5	0.5	2.5	ng/L	ND, 1	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Allethrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Bifenthrin	EPA 8270M_NCI	=	0.2	0.1	0.5	ng/L	J	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Bifenthrin	EPA 8270M_NCI	=	3	0.1	0.5	ng/L		Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Bifenthrin	EPA 8270M_NCI	=	0.7	0.1	0.5	ng/L		Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Bifenthrin	EPA 8270M_NCI	=	13	0.6	2.8	ng/L		Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Bifenthrin	EPA 8270M_NCI	=	0.1	0.1	0.5	ng/L	J	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Bifenthrin	EPA 8270M_NCI	=	1	0.1	0.5	ng/L		Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Bifenthrin	EPA 8270M_NCI	=	21	0.1	0.5	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Bifenthrin	EPA 8270M_NCI	=	0.5	0.1	0.5	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Bifenthrin	EPA 8270M_NCI	=	11	0.1	0.5	ng/L		Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Bifenthrin	EPA 8270M_NCI	=	0.6	0.1	0.5	ng/L		Caltest	3/21/19	3/30/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW37	SC-55	3/18/19	Bifenthrin	EPA 8270M_NCI	=	4.7	0.1	0.5	ng/L		Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Bifenthrin	EPA 8270M_NCI	=	0.7	0.1	0.5	ng/L		Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Bifenthrin	EPA 8270M_NCI	=	7.7	0.1	0.5	ng/L		Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Bifenthrin	EPA 8270M_NCI	=	0.8	0.1	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Bifenthrin	EPA 8270M_NCI	=	0.8	0.1	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Bifenthrin	EPA 8270M_NCI	=	14	0.1	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Bifenthrin	EPA 8270M_NCI	=	0.6	0.1	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Bifenthrin	EPA 8270M_NCI	=	17	0.1	0.5	ng/L		Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Bifenthrin	EPA 8270M_NCI	<	0.1	0.1	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Bifenthrin	EPA 8270M_NCI	=	1.9	0.1	0.5	ng/L		Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Bifenthrin	EPA 8270M_NCI	=	1.2	0.1	0.5	ng/L		Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Bifenthrin	EPA 8270M_NCI	=	13	0.5	2.5	ng/L		Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Bifenthrin	EPA 8270M_NCI	=	5	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Bifenthrin	EPA 8270M_NCI	=	24	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Bifenthrin	EPA 8270M_NCI	=	6.1	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Bifenthrin	EPA 8270M_NCI	=	16	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Bifenthrin	EPA 8270M_NCI	=	2.1	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Bifenthrin	EPA 8270M_NCI	=	1.6	0.1	0.5	ng/L		Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Bifenthrin	EPA 8270M_NCI	=	0.3	0.1	0.5	ng/L	J	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Bifenthrin	EPA 8270M_NCI	=	12	0.5	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Bifenthrin	EPA 8270M_NCI	=	3.8	0.5	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Bifenthrin	EPA 8270M_NCI	=	29	1	5	ng/L		Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Bifenthrin	EPA 8270M_NCI	=	1.7	0.1	0.5	ng/L		Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Bifenthrin	EPA 8270M_NCI	=	6.3	0.5	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Bifenthrin	EPA 8270M_NCI	=	0.9	0.1	0.5	ng/L		Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Bifenthrin	EPA 8270M_NCI	=	0.4	0.1	0.5	ng/L	J	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Bifenthrin	EPA 8270M_NCI	=	8.4	0.1	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Bifenthrin	EPA 8270M_NCI	=	14	0.1	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Bifenthrin	EPA 8270M_NCI	=	32	0.5	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Bifenthrin	EPA 8270M_NCI	=	1.3	0.1	0.5	ng/L		Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Bifenthrin	EPA 8270M_NCI	=	13	0.6	2.8	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Bifenthrin	EPA 8270M_NCI	=	4.2	0.5	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Bifenthrin	EPA 8270M_NCI	=	25	0.5	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Bifenthrin	EPA 8270M_NCI	=	1	0.1	0.5	ng/L		Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Bifenthrin	EPA 8270M_NCI	=	10	0.1	0.5	ng/L		Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW35	SC-1R	9/24/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Cyfluthrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Cyfluthrin	EPA 8270M_NCI	=	2.1	0.2	0.6	ng/L		Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Cyfluthrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Cyfluthrin	EPA 8270M_NCI	=	2.5	0.2	0.5	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Cyfluthrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Cyfluthrin	EPA 8270M_NCI	=	1.5	0.2	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Cyfluthrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Cyfluthrin	EPA 8270M_NCI	=	1.8	1	2.5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Cyfluthrin	EPA 8270M_NCI	=	0.5	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Cyfluthrin	EPA 8270M_NCI	=	1	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Cyfluthrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Cyfluthrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Cyfluthrin	EPA 8270M_NCI	=	6.1	1	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Cyfluthrin	EPA 8270M_NCI	=	2.5	1	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Cyfluthrin	EPA 8270M_NCI	=	1.1	1	2.5	ng/L	J, 1	Caltest	12/19/18	1/1/19
SE69	SC-55R	12/16/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-56	12/16/18	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Cyfluthrin	EPA 8270M_NCI	=	20	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Cyfluthrin	EPA 8270M_NCI	=	2.9	1	2.8	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Cyfluthrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Cyfluthrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.6	ng/L		Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Cypermethrin	EPA 8270M_NCI	=	1.7	0.2	0.5	ng/L		Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Cypermethrin	EPA 8270M_NCI	=	5.3	0.2	0.5	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Cypermethrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Cypermethrin	EPA 8270M_NCI	=	0.5	0.2	0.5	ng/L		Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Cypermethrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Cypermethrin	EPA 8270M_NCI	=	2.8	0.2	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Cypermethrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	SC-1	11/29/18	Cypermethrin	EPA 8270M_NCI	=	6.1	1	2.5	ng/L		Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Cypermethrin	EPA 8270M_NCI	=	1.7	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Cypermethrin	EPA 8270M_NCI	=	0.8	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Cypermethrin	EPA 8270M_NCI	=	1.5	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Cypermethrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Cypermethrin	EPA 8270M_NCI	=	2.3	1	2.5	ng/L	J	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Cypermethrin	EPA 8270M_NCI	=	1.5	1	2.5	ng/L	J	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Cypermethrin	EPA 8270M_NCI	=	3.8	1	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-55R	12/16/18	Cypermethrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Cypermethrin	EPA 8270M_NCI	=	2.1	1	2.5	ng/L	J	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Cypermethrin	EPA 8270M_NCI	=	0.5	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Cypermethrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Cypermethrin	EPA 8270M_NCI	=	4.3	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Cypermethrin	EPA 8270M_NCI	=	1.5	1	2.8	ng/L	J	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Cypermethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Cypermethrin	EPA 8270M_NCI	=	3.3	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Cypermethrin	EPA 8270M_NCI	=	0.2	0.2	0.5	ng/L	J	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Cypermethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.5	0.2	1	ng/L	J	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1	0.2	1.1	ng/L	J	Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.5	0.2	1	ng/L	J	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	7.3	0.2	1	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.6	0.2	1	ng/L	J	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19

	011 0 1				_			DI // //		=			
Event	Site Code	Date Sampleo	d Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW37	SC-1R	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.3	0.2	1	ng/L	J	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	6.8	0.2	1	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	2.7	1	5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	1	0.2	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	9.4	0.2	1	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	9.6	1	5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55R	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	=	0.8	0.2	1	ng/L	J	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	=	11	1	5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	<	1	1	5.7	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	<	1	1	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	=	6	1	5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Deltamethrin:Tralomethrin	EPA 8270M NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Deltamethrin:Tralomethrin	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19

Event	Site Code	Date Sampleo	d Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW35	SC-1	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.2	0.2	1	ng/L	J	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1.1	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	4.3	0.2	1	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.4	0.2	1	ng/L		Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.5	0.2	1	ng/L	J	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	15	0.2	1	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.3	0.2	1	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.4	0.2	1	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	0.3	0.2	1	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	=	1	1	5	ng/L	J	Caltest	12/19/18	1/1/19

Event	Site Code	Date Sampled	1 Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE69	SC-55R	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5.7	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	1	1	5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Esfenvalerate:Fenvalerate	EPA 8270M_NCI	<	0.2	0.2	1	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.8	ng/L	ND	Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Fenpropathrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Fenpropathrin	EPA 8270M_NCI	=	1.3	0.2	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Fenpropathrin	EPA 8270M_NCI	=	0.7	0.2	0.5	ng/L		Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Fenpropathrin	EPA 8270M_NCI	=	1.4	0.2	0.5	ng/L		Caltest	11/30/18	12/8/18

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	NW-RAIN	11/29/18	Fenpropathrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Fenpropathrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Fenpropathrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Fenpropathrin	EPA 8270M_NCI	=	21	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Fenpropathrin	EPA 8270M_NCI	=	2.5	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Fenpropathrin	EPA 8270M_NCI	=	5.4	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Fenpropathrin	EPA 8270M_NCI	=	4.5	1	2.8	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Fenpropathrin	EPA 8270M_NCI	=	1.2	1	2.5	ng/L	J	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Fenpropathrin	EPA 8270M_NCI	=	4	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Fenpropathrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Fenpropathrin	EPA 8270M_NCI	=	2.8	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.3	1	2.8	ng/L	J	Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.7	0.2	0.5	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19

Event	Site Code	Date Sampleo	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW37	SC-1	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND, 1	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	4	0.2	0.5	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.9	0.2	0.5	ng/L		Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.3	0.2	0.5	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.4	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.5	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.1	0.2	0.5	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	0.4	0.2	0.5	ng/L	J	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	2.6	1	2.5	ng/L		Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	2.5	2	5	ng/L	J	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1	0.2	0.5	ng/L		Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	3.9	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.5	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	5.6	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	4.6	1	2.8	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1	1	2.5	ng/L	J	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	3.4	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Lambda-Cyhalothrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19

Event	Site Code	Date Sampleo	d Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE70	SC-RAIN	5/16/19	Lambda-Cyhalothrin	EPA 8270M_NCI	=	1.6	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Permethrin	EPA 8270M_NCI	<	10	10	28	ng/L	ND	Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Permethrin	EPA 8270M_NCI	=	18	2	10	ng/L		Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Permethrin	EPA 8270M_NCI	=	8.5	2	10	ng/L	J	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Permethrin	EPA 8270M_NCI	=	14	2	10	ng/L		Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Permethrin	EPA 8270M_NCI	=	4.2	2	10	ng/L	J	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND, 1	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Permethrin	EPA 8270M_NCI	=	12	2	10	ng/L		Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Permethrin	EPA 8270M_NCI	=	6.2	2	10	ng/L	J	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Permethrin	EPA 8270M_NCI	=	12	10	25	ng/L	J	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Permethrin	EPA 8270M_NCI	=	24	2	10	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Permethrin	EPA 8270M_NCI	=	26	2	10	ng/L		Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	12/19/18	1/1/19
Event	Site Code	Date Sampled	I Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
-------	-----------	--------------	-----------------	-------------------	---	--------	-----	-------	-------	------	----------	-----------	---------------
SE69	SC-55	12/16/18	Permethrin	EPA 8270M_NCI	<	20	20	50	ng/L	ND	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Permethrin	EPA 8270M_NCI	<	10	10	28	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Permethrin	EPA 8270M_NCI	<	10	10	25	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Permethrin	EPA 8270M_NCI	<	2	2	10	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.6	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-56R	9/24/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-56R	1/30/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE68	NE-RAIN	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55R	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.8	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56R	5/15/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Tau-Fluvalinate	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
DW35	SC-1	9/24/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-1R	9/24/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-55	9/24/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/4/18
DW35	SC-55R	9/24/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW35	SC-56	9/24/18	Tetramethrin	EPA 8270M_NCI	<	1	1	2.8	ng/L	ND	Caltest	9/25/18	9/29/18
DW35	SC-56R	9/24/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	9/25/18	10/5/18
DW36	SC-1	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW36	SC-1R	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-55R	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/10/19
DW36	SC-56	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19

Event	Site Code	Date Sampleo	I Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
DW36	SC-56R	1/30/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	2/1/19	2/8/19
DW37	SC-1	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-1R	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-55	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-55R	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/30/19
DW37	SC-56	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW37	SC-56R	3/18/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	3/21/19	3/28/19
DW38	SC-1	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-1R	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-55R	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
DW38	SC-56	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/28/19
DW38	SC-56R	6/19/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	6/21/19	6/29/19
SE68	NE-RAIN	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	NW-RAIN	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1	11/29/18	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	11/30/18	12/8/18
SE68	SC-1R	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-55R	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-56R	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE68	SC-RAIN	11/29/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	11/30/18	12/7/18
SE69	NE-RAIN	12/17/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	NW-RAIN	12/16/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-1	12/16/18	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-1R	12/16/18	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-55	12/16/18	Tetramethrin	EPA 8270M_NCI	<	2	2	5	ng/L	ND	Caltest	12/19/18	1/2/19
SE69	SC-55R	12/16/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-56	12/16/18	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	12/19/18	1/1/19
SE69	SC-56R	12/16/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE69	SC-RAIN	12/16/18	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	12/19/18	12/21/19
SE70	NE-RAIN	5/16/19	Tetramethrin	EPA 8270M_NCI	=	17	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19
SE70	NW-RAIN	5/16/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-1	5/15/19	Tetramethrin	EPA 8270M_NCI	=	28	1	2.5	ng/L		Caltest	5/17/19	5/25/19
SE70	SC-1R	5/15/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-55	5/15/19	Tetramethrin	EPA 8270M_NCI	<	1	1	2.8	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-55R	5/15/19	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19
SE70	SC-56	5/15/19	Tetramethrin	EPA 8270M_NCI	<	1	1	2.5	ng/L	ND	Caltest	5/17/19	5/25/19

Event	Site Code	Date Sampled	Analyte	Analytical Method	Q	Result	MDL	RL/ML	Units	Flag	Lab Name	Prep Date	Analysis Date
SE70	SC-56R	5/15/19	Tetramethrin	EPA 8270M_NCI	<	0.2	0.2	0.5	ng/L	ND	Caltest	5/17/19	5/26/19
SE70	SC-RAIN	5/16/19	Tetramethrin	EPA 8270M_NCI	=	1.1	0.2	0.5	ng/L		Caltest	5/17/19	5/25/19

Appendix C 2018-2019 Data Summary Tables

SMITH CANAL 2018-2019 DATA FOR POLLUTANTS OF CONCERN

Fecal Indicator Bacteria

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	WQO
E. Coli (MPN	/100mL)						
DW35	<10	<10	20	20	52	73	235
DW36	24,196	717	10	52	10	74	235
DW37	107.1	4.1	<1	5.2	1	4.1	235
DW38	2,419.6	2	8.6	26.2	16.8	35.5	235
SE68	2,419.6	488.4	2,419.6	1,553.1	2,419.6	39.5	235
SE69	6,488	3,255	9,208	1,187	8,164	857	235
SE70	2,420	490	2,420	2,420	2,420	160	235
Fecal Colifor	m (MPN/100ml	L)					
DW35	<18	170	490	130	330	68	400
DW36	790,000	1,700	45	110	40	20	400
DW37	1,200	110	<18	45	68	230	400
DW38	79,000	78	78	330	22,000	230	400
SE68	230,000	130,000	79,000	230,000	490,000	4,900	400
SE69	7,900	17,000	11,000	2,300	33,000	1,300	400
SE70	13,000,000	6,300	3,500,000	110,000	130,000	3,300	400

Mercury

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN
Methyl Mercury, Tota	l (ng/L)								
DW35	<0.02	<0.02	0.11	<0.02	0.32	<0.02	-	-	-
DW36	0.02	0.04	0.1	0.05	0.08	0.07	-	-	-
DW37	0.05	0.06	0.06	<0.02	0.07	0.06	-	-	-
DW38	0.07	0.04	1.0	0.05	0.14	0.06	-	-	-
SE68	<0.02	0.07	0.09	0.09	0.15	0.03	0.06	<0.02	0.03
SE69	0.09	0.07	0.1	0.07	0.12	0.05	0.04	0.03	0.03
SE70	0.43	0.06	0.16	0.16	0.24	0.05	0.04	0.07	0.05
Mercury, Total (ng/L))								
DW35	1.0	1.8	22	2.1	49	0.86	-	-	-
DW36	830	1,300	76	1.7	8.0	2.6	-	-	-
DW37	5.3	3.3	6.4	2.6	6.5	2.2	-	-	-
DW38	2.1	1.6	77	1.8	2.6	1.6	-	-	-
SE68	7.0	3.9	11	8.7	15	1.8	2.2	1.3	1.8
SE69	8.3	3.8	17	2.3	8.7	1.6	2.2	2.6	3.4
SE70	21	5.4	20	24	13	3.3	4.6	3.2	3.5

Dissolved Oxygen

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN	WQO
Dissolved Oxygen (m	ng/L)									
DW35	6.4	7.1	3.78	7.16	2.56	8.06	-	-	-	>6
DW36	8.66	9.48	5.12	7.67	5.17	7.58	-	-	-	>5
DW37	7.74	12.24	7.94	10.29	5.21	10.07	-	-	-	>5
DW38	6	6.29	4.04	6.6	3.08	8.08	-	-	-	>5
SE68	10.18	10.25	7.75	6.04	8.33	6.86	11.49	9.58	10.77	>6
SE69	8.49	6.51	9.82	5.06	8.12	7.13	10.67	10.24	7.93	>5
SE70	8.03	7.75	5.8	6.42	5.86	7.4	6.99	9.27	8.3	>5

Chlorpyrifos

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN	WQO
Chlorpyrifos (ng/L)										
DW35	<0.5	<0.5	<0.5	<0.5	<0.6	<0.5	-	-	-	15
DW36	<0.5	<0.5	1.1	<0.5	<0.5	0.6	-	-	-	15
DW37	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	15
DW38	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	-	-	-	15
SE68	3.3	2.6	4.4	1.8	4.2	1	16	8.6	13	15
SE69	<2	<2	<5	<0.5	<2	<0.5	2.4	1.6	0.9	15
SE70	<2	<0.5	<3	<2	<2	<0.5	0.8	<0.5	0.6	15

Pyrethroids

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN
Allethrin (ng/L)									
DW35	<0.1	<0.1	<0.1	<0.1	<0.6	<0.1	-	-	-
DW36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
DW37	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
DW38	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	-	-
SE68	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
SE69	<0.5	<0.5	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1
SE70	<0.5	<0.1	<0.6	<0.5	<0.5	<0.1	<0.1	<0.1	<0.1
Bifenthrin (ng/L)									
DW35	0.2	0.4	3	0.7	13	0.1	-	-	-
DW36	1	<0.1	21	0.5	11	0.4	-	-	-
DW37	0.3	0.6	4.7	0.7	7.7	<0.1	-	-	-
DW38	0.8	0.8	14	0.6	17	<0.1	-	-	-
SE68	13	5	24	6.1	16	2.1	1.9	1.2	1.6
SE69	12	3.8	29	1.7	6.3	0.9	0.4	0.3	0.4
SE70	32	1.3	13	4.2	25	1	8.4	14	10

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN
Cyfluthrin (ng/L)									
DW35	<0.2	<0.2	0.3	0.7	2.1	0.3	-	-	-
DW36	<0.2	0.2	2.5	<0.2	0.3	<0.2	-	-	-
DW37	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	-	-	-
DW38	<0.2	<0.2	1.5	<0.2	0.8	<0.2	-	-	-
SE68	1.8	0.5	1	0.4	0.3	<0.2	<0.2	<0.2	<0.2
SE69	6.1	2.5	1.1	<0.2	<1	<0.2	<0.2	<0.2	<0.2
SE70	20	<0.2	2.9	<1	<1	<0.2	<0.2	<0.2	<0.2
Cypermethrin (ng/L)	•	•							•
DW35	<0.2	<0.2	0.3	<0.2	0.8	<0.2	-	-	-
DW36	1.7	<0.2	5.3	<0.2	0.9	0.3	-	-	-
DW37	0.3	<0.2	<0.2	<0.2	0.5	<0.2	-	-	-
DW38	0.7	<0.2	2.8	<0.2	0.9	<0.2	-	-	-
SE68	6.1	0.8	1.7	0.8	1.5	<0.2	<0.2	<0.2	0.7
SE69	2.3	1.5	3.8	0.4	2.1	0.3	<0.2	<0.2	<0.2
SE70	4.3	<0.2	1.5	<1	3.3	0.2	0.5	0.3	<0.2
Deltamethrin:Tralom	ethrin (ng/L	_)							
DW35	<0.2	<0.2	<0.2	0.5	1	<0.2	-	-	-
DW36	0.5	<0.2	7.3	<0.2	0.6	<0.2	-	-	-
DW37	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	6.8	<0.2	<0.2	<0.2	-	-	-
SE68	2.7	1	9.4	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2
SE69	9.6	<1	<1	0.8	<1	< 0.2	<0.2	<0.2	<0.2
SE70	11	< 0.2	<1	<1	6	< 0.2	<0.2	<0.2	<0.2

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN
Esfenvalerate:Fenva	lerate (ng/L)							
DW35	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	-	-	-
DW36	<0.2	<0.2	4.3	<0.2	0.4	<0.2	-	-	-
DW37	<0.2	<0.2	0.5	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	15	<0.2	<0.2	<0.2	-	-	-
SE68	<1	0.3	0.4	<0.2	0.3	<0.2	<0.2	<0.2	<0.2
SE69	<1	<1	1	<0.2	<1	<0.2	<0.2	<0.2	<0.2
SE70	<1	<0.2	<1	<1	<1	<0.2	<0.2	<0.2	<0.2
Fenpropathrin (ng/L)									
DW35	<0.2	<0.2	<0.2	<0.2	<1	<0.2	-	-	-
DW36	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	-	-	-
DW37	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	1.3	<0.2	0.7	<0.2	-	-	-
SE68	<1	<0.2	<0.2	<0.2	0.4	<0.2	1.4	0.3	0.4
SE69	<1	<1	<2	<0.2	<1	<0.2	<0.2	<0.2	<0.2
SE70	5.4	<0.2	4.5	1.2	4	<0.2	21	2.5	2.8
Lambda-Cyhalothrin	(ng/L)								
DW35	<0.2	<0.2	<0.2	<0.2	1.3	<0.2	-	-	-
DW36	<0.2	<0.2	1.7	<0.2	0.3	<0.2	-	-	-
DW37	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	4	<0.2	0.9	<0.2	-	-	-
SE68	<1	< 0.2	1.4	0.5	1.1	< 0.2	0.4	0.3	0.4
SE69	2.6	<1	2.5	1	<1	< 0.2	<0.2	<0.2	<0.2
SE70	5.6	< 0.2	4.6	1	3.4	< 0.2	3.9	1.5	1.6

Event	SC-1	SC-1R	SC-55	SC-55R	SC-56	SC-56R	NE-RAIN	NW-RAIN	SC-RAIN
Permethrin (ng/L)									
DW35	<2	<2	<2	<2	<10	<2	-	-	-
DW36	<2	<2	18	<2	8.5	<2	-	-	-
DW37	<2	<2	14	<2	4.2	<2	-	-	-
DW38	<2	<2	12	<2	6.2	<2	-	-	-
SE68	12	<2	24	26	<2	<2	<2	<2	<2
SE69	<10	<10	<20	<2	<10	<2	<2	<2	<2
SE70	<10	<2	<10	<10	<10	<2	<2	<2	<2
Tau-Fluvalinate (ng/L	_)	•					·		•
DW35	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW36	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW37	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE68	<1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
SE69	<1	<1	<1	<0.2	<1	<0.2	<0.2	<0.2	<0.2
SE70	<1	<0.2	<1	<1	<1	<0.2	<0.2	<0.2	<0.2
Tetramethrin (ng/L)									
DW35	<0.2	<0.2	<0.2	<0.2	<1	<0.2	-	-	-
DW36	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW37	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
DW38	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	-	-
SE68	<1	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2
SE69	<1	<1	<2	< 0.2	<1	< 0.2	<0.2	<0.2	<0.2
SE70	28	< 0.2	<1	<1	<1	< 0.2	17	<0.2	1.1

Appendix D 2018-2019 Sediment Toxicity Results

Sediment Toxicity Lab Report September 24, 2018 at SC-5R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 October 26, 2018

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected September 24, 2018. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.										
Sample Station Toxicity Present Relative to Lab Control?										
Sample Station	Survival	Growth								
SC-5R	YES	YES								
FD	YES	YES								

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 29417.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected September 24, 2018

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 (707) 207-7760

October 2018

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected September 24, 2018

Table of Contents

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples
- Appendix B Test Data and Summary of Statistics for the Evaluation of the Toxicity of Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

i

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on September 24, 2018. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On September 24, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program.									
Sample Station	Date Collected	Date Received							
SC-5R	9/24/18	9/25/18							
FD	9/24/18	9/25/18							

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C and were fed a commercial Yeast-Cerophyll[®]-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were tested at the 100% concentration only. There were eight replicates for each test

treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 µm mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water). The test replicates with sediments and clean overlying water were established approximately 24 hours prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hour period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 12-13 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T_0).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fell to mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for approximately 24 hours, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments. Statistical analyses were performed using CETIS[®] (TidePool Scientific Software, McKinleyville, CA).

5/19

3. RESULTS

Test results are summarized in Table 2. There were significant reductions in survival and growth in the SC-5R sediment sample and field duplicate (FD) sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2.	Table 2. Data summary for the Stockton Stormwater Program sediment samples.										
Test Treatment	% Survival	% Survival% ReductionToxic? (Y/N)Mean dry weight (mg)% ReductionToxic? 									
Control	100 N/A N/A 0.094 N/A N/A										
SC-5R	SC-5R 92.5* 7.5% Y 0.063* 33.5% Y										
FD 92.5* 7.5% Y 0.052* 44.8% Y											

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were significant reductions in survival and growth in the SC-5R sediment sample and field duplicate (FD) sample.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.										
Sample Station Toxicity Present Relative to Lab Control?										
Sample Station	Survival	Growth								
SC-5R	YES	YES								
FD	YES	YES								

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

6/19

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

									С	on	do	rΕ	ar	th	Те	echnolog	ies	Inc	
Samp	e Result	s TAT: 🗖 Rush 🗸	Standard				×		PO Sou	Box 3905	/21663 Bria	n Lane	188 Fr	rank West	Circle, Suit	е ^т Г	2941 Sunrise Blvd, Suite 150 Benche Condens, CA 05742	1739	Ashby Road, Suite B
<u>SHIP</u>	PED TO	<u>):</u>				CC	ND	OR	209 209	9.532.0361 9.532.0773	fax	Ľ	209.23 209.23	34.0518 34.0538 fa	x	L	916.783.2060 916.783.2464 fax	209.3 209.3	ed, UA 95348 88.9601 88.1778 fax
Pacif	ic EcoR	lisk							4	SEND	RESU	LTS TO	<u>):</u>	Michel	line D	ovla	Kinf		
2250	Cordel	ia Road							2		NAI F-M		r	nkipf@	D)conc	lorea	rth.com		
Fairfi	eld, CA	94534 (707) 207-7	7760						e		E-M	AIL:	-						
												\checkmark	PLEA	SE FA	X/EM	AIL	RESULTS TO ADDRES	SMAR	KED ABOVE
PROJ	ECTNA	ME/LOCATION: CO	OS Urban Disch	narge	e	EDF RE	SULI	'S RE	QUIRI	ED	ES 🗌	NO			SITE	EGLO	BAL ID: CEDEN FOR	RMAT	REQUESTED
PROJ	ECT NO	.: 6066J-05-01	-						ca*										
SAME	LED BY	(Signature)	Im			S O		g	zte		ž.								
				ii.	ainers	ative	YSIS IOD	iltere	a a										
			Sample ID	Mat	of cont	eserv see b	NAL	eld F	/ale	0	<u>a</u> :								
Date	Time	Sample Site Name	(if different)		#	Pr S	ΖĘ	E	Ŧ	Ĕ	U						REMARKS		LAB ID#
9/24/18	1520	1819-DW35-	SC-5R	S		1		Ν	\checkmark	\checkmark	\checkmark			*chronic freshwater (EPA/600/4-91/003)					
9/24/18	1520	1819-DW35-	FD	S		1		N	\checkmark	\checkmark	\checkmark		Hyalella azteca survival & growth						
																	Conduct additional pyret	hroids	
																	analysis if toxicity is obse	erved.	
																	Sub samples to) be	
																	collected for Cal	ltest	
D.I.	1.15																TOC RL= 1 m	ig/L	
Relinqui	shed By: (Signature)	Ai	Date	91	125/10	Time:	12:	50	Receiv	ved By: (Signature)	Dee	e 2	Be	le_	- Pate:	2571	8 Time: 2:50
Matrix	SHEA BY: (Signature	er	9	10	25/18		13	56	Receiv	ved By: (Signature)	aly	ana	nor i	1. 7	Romend 9-2	25 - 18	3 1356
DW Dri	iking Water	www.weste water	Hazardous Waste (Wat	ter)	S	Soil/Solid	sw	Sto	orm Wate	G	Grou	ind Water	Prése	e rvative 4°C 💽	HCL	3 N:	OH 4 Na2S2O3 5 HNO	la 🙆 F	H2SO4 Other
Original Send								Ye	llow –	File			Pink – Log Book						

Appendix **B**

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CETIS Summary Report

 Report Date:
 23 Oct-18 09:31 (p 1 of 1)

 Test Code:
 CE_0918HA_C1 | 20-2614-6070

Hyalella 10-d Surv	ival and Gr	owth Sedir	nent Test							Pacif	ic EcoRisk
Batch ID: 15-3	3727-7858	Tes	t Type: Sur	vival-Growt	h (10 day)		Ar	alyst: Ro	bert Gee		
Start Date: 30 S	Sep-18 14:10	0 Pro	tocol: EP	A/600/R-99/	064 (2000)		Di	l <mark>uent:</mark> No	t Applicable		
Ending Date: 10 0	Oct-18 10:30) Spe	cies: Hya	alella azteca	l		Br	ine: No	t Applicable		
Duration: 9d	20h	Sou	irce: Aqu	uatic Biosys	tems, CO		Ag	e: 13			
Sample Code	Sample II	D San	nple Date	Receip	t Date	Sample Ag	e Cli	ient Name	Pi	roject	
CE_0918HA_C1	15-9500-7	058 30 8	Sep-18 14:10) 30 Sep-	-18 14:10	n/a (22.6 °C	;) Co	ndor Earth To	echnologi 29	9417	
1819-DW35-SC-5R	00-9457-7	005 24 9	Sep-18 15:20) 25 Sep-	-18 13:56	5d 23h (9.3	°C)				
1819-DW35-FD	16-8427-5	513 24 5	Sep-18 15:20) 25 Sep-	-18 13:56	5d 23h (9.3	°C)				
Sample Code	Material 1	Гуре	Sar	nple Sourc	e	Sta	tion Loca	ation	Lat/Long		
CE_0918HA_C1	Sediment		Cor	ndor Earth T	echnologie	s lae	BQA				
1819-DW35-SC-5R	Sediment		Cor	ndor Earth T	echnologie	s 181	9-DW35				
1819-DW35-FD	Sediment		Cor	ndor Earth T	echnologie	S					
Single Compariso	n Summary	1									
Analysis ID End	point		Comparis	on Method			P-Value	Compari	son Result		
01-4556-7982 Mea	n Dry Weigl	ht-mg	Equal Vari	ance t Two-	Sample Te	st	7.2E-04	1819-DW	35-SC-5R fa	iled mean c	Iry weight-m
10-3945-9151 Mea	n Dry Weigł	nt-mg	Equal Vari	ance t Two-	Sample Te	st	2.4E-07	1819-DW	35-FD failed	mean dry v	veight-mg
14-7982-6210 Surv	vival Rate		Wilcoxon I	Rank Sum T	wo-Sample	Test	0.0385	1819-DW	35-SC-5R fa	iled surviva	l rate
06-3709-8280 Surv	vival Rate		Wilcoxon F	Rank Sum T	wo-Sample	Test	0.0385	1819-DW	35-FD failed	survival rat	е
Mean Dry Weight-	ng Summa	ry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0918HA_C1	CS	8	0.094	0.0848	0.103	0.079	0.114	0.0039	0.011	11.72%	0.00%
1819-DW35-SC-5R		8	0.0625	0.0461	0.0789	0.0257	0.09	0.00693	0.0196	31.36%	33.47%
1819-DW35-FD		8	0.0519	0.0452	0.0586	0.0411	0.0633	0.00284	0.00802	15.46%	44.82%
Survival Rate Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0918HA_C1	CS	8	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
1819-DW35-SC-5R		8	0.925	0.838	1.000	0.700	1.000	0.037	0.104	11.19%	7.50%
1819-DW35-FD		8	0.925	0.851	0.999	0.800	1.000	0.031	0.089	9.58%	7.50%
Mean Dry Weight-r	ng Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0918HA_C1	CS	0.097	0.097	0.114	0.08	0.095	0.097	0.093	0.079		
1819-DW35-SC-5R		0.058	0.048	0.0789	0.0656	0.063	0.09	0.0257	0.0711		
1819-DW35-FD		0.053	0.061	0.0411	0.0633	0.0475	0.043	0.056	0.05		
Survival Rate Deta	it									-	
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0918HA_C1	CS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
1819-DW35-SC-5R		1.000	1.000	0.900	0.900	1.000	1.000	0.700	0.900		
1819-DW35-FD		1.000	1.000	0.900	0.900	0.800	1.000	1.000	0.800		
Survival Rate Bino	mials										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0918HA_C1	CS	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10		
1819-DW35-SC-5R		10/10	10/10	9/10	9/10	10/10	10/10	7/10	9/10		
1819-DW35-FD		10/10	10/10	9/10	9/10	8/10	10/10	10/10	8/10		

Analyst: Rb QA: MM

Non-Section of Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colsp	CETIS Analyti	cal Rep	ort						Repo	ort Date:	23 CE 091	Oct-18 09:	31 (p 3 of 4)
Analysis ID: 14-7982-8210 Analyzed: Endpoint: Survival Rate Analyzed: CETIS Version: CETIS V1.9.2 Data Transform Alt Hyp Comparison Result PMSD Angular (Corrected) C > T 1819-DW35-SC-SR failed survival rate 0.17% Wilcoxon Rank Sum Two-Sample Test Sample I Test Stat Critical Ties DF P-Type P-Value Decision(a:5%) Control Sed 1919-DW35-SC-SR* 52 n/a 1 14 Exact 0.0385 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(a:5%) Source Sum Squares Mean Square DF F Stat P-Value Decision(a:5%) Source Sum Squares Mean Square DF F Stat P-Value Decision(a:1%) Variances Variances Variances 6.32E+13 8.89 <1.0E-37	Hyalella 10-d Surv	ival and G	rowth Sedir	nent Test			_		TCSC	00000.	02_031	Paci	fic EcoRisk
Data Transform Alt Hyp Comparison Result PMSD Angular (Corrected) C > T 1819-DW35-SC-5R failed survival rate 6.17% Wilcoxon Rank Sum Two-Sample Test Sample I Test Stat Critical Ties DF P-Type P-Value Decision(c:5%) Control Sed Control Sed 114 Exact 0.0385 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(c:5%) Effect Effect Effect Image Significant S	Analysis ID: 14- Analyzed: 23	7982-6210 Oct-18 9:3	Enc 0 Ana	lpoint: Su lysis: No	vival Rate nparametric	-Two Sam	ple		CET	S Version: ial Results	CETISv : Yes	1.9.2	
Angular (Corrected) C > T 1819-DW35-SC-5R failed survival rate 6.17% Wilcoxon Rank Sum Two-Sample Test Sample II Test Stat Critical Ties DF P-Type P-Value Decision(c:5%) Control Sed 1819-DW35-SC-6R* 52 n/a 1 14 Exact 0.0385 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(c:5%) Between 0.0517302 1 4.72 0.0474 Significant Effect Error 0.15334 0.0109529 14 142 Decision(c:1%) Variances Distribution Test Test Stat Critical P-Value Decision(c:1%) Variances Survival Rate Summary Shapiro-Wilk W Normality Test 0.75 0.841 6.3E-04 Non-Normal Distribution Survival Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Survival Rate Summary Sample Code Count Mean 95% LCL	Data Transform		Alt Hyp						Comparis	on Result			PMSD
Wilcoxon Rank Sum Two-Sample Test Sample I Test Stat Critical Ties DF P-Type P-Value Decision(0:5%) Control Sed 1819-DW35-SC-SR* 52 n/a 1 14 Exact 0.0385 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(0:5%) Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Error 0.15334 0.0109529 14 - - - Distributional Tests Attribute Test Test Stat Critical P-Value Decision(c:1%) Survival Rate Summary Saspiro-Wilk W Normality Test 0.75 0.841 6.3E-04 Non-Normal Distribution Sample Code Count Mean 95% UCL 95% UCL Mein Max Std Err CV% %Effect CE0518HA_C1 CS 8 1.000 1.000 1.000 0.007 0.00%	Angular (Corrected))	C > T						1819-DW	35-SC-5R fa	ailed surviva	al rate	6.17%
Sample I vs Sample II Test Stat Critical Ties DF P-Type P-Value Decision(a:5%) Control Sed 1819-DW36-SC-SR* 52 n/a 1 14 Exact 0.0385 Significant Effect Source Sum Squares Mean Square F F Stat P-Value Decision(a:5%) Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Error 0.15334 0.0109529 14	Wilcoxon Rank Su	ım Two-Sa	mple Test										
Control Sed 1819-DW35-SC-5R* 52 n/a 1 14 Exact 0.0385 Significant Effect ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(a:5%) Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Control Sad 0.0109529 14	Sample I vs	Sample I	1	Test Stat	Critical	Ties D	DF F	P-Type	P-Value	Decision	(α:5%)		
ANOVA Table Source Sum Squares Mean Square DF F Stat P-Value Decision(0:5%) Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Total 0.205071 15 4.72 0.0474 Significant Effect Distributional Tests Test Test Stat Critical P-Value Decision(0:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37	Control Sed	1819-DW	/35-SC-5R*	52	n/a	1 1	14 E	Exact	0.0385	Significan	t Effect		
Source Sum Squares Mean Square DF F Stat P-Value Decision(n::5%) Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Error 0.15334 0.0109529 14	ANOVA Table						_						
Between 0.0517302 0.0517302 1 4.72 0.0474 Significant Effect Error 0.15334 0.0109529 14 15 15 15 15 Distributional Tests Attribute Test Test Stat Critical P-Value Decision(c:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37	Source	Sum Squ	lares	Mean Squ	lare	DF	F	- Stat	P-Value	Decision	(α:5%)		
Error 0.15334 0.0109529 14 Total 0.205071 15 Distributional Tests Test Test Stat Critical P-Value Decision(a:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37 Unequal Variances Distribution Shapiro-Wilk W Normality Test 0.75 0.841 6.3E-04 Non-Normal Distribution Survival Rate Summary Std Err CV% %Effect Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 0.000 0.00% 0.00% 0.00% Bample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0.000% 0.00% 0.00% 0.00% <td>Between</td> <td>0.051730</td> <td>2</td> <td>0.0517302</td> <td>2</td> <td>1</td> <td>4</td> <td>1.72</td> <td>0.0474</td> <td>Significan</td> <td>t Effect</td> <td></td> <td></td>	Between	0.051730	2	0.0517302	2	1	4	1.72	0.0474	Significan	t Effect		
India 0.2050/1 15 Distributional Tests Test Stat Critical P-Value Decision(a:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37 Unequal Variances Survival Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 0.925 0.838 1.000 1.000 1.000 0.000 0.00% 0.00% 0.00% Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Ce_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <th< td=""><td>Error</td><td>0.15334</td><td></td><td>0.0109529</td><td>)</td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Error	0.15334		0.0109529)	14							
Distributional Tests Attribute Test Test Stat Critical P-Value Decision(α:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37	lotal	0.205071			-	15							
Attribute Test Test Stat Critical P-Value Decision(0:1%) Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37	Distributional Test	s											
Variances Variance Ratio F Test 8.63E+13 8.89 <1.0E-37 Unequal Variances Distribution Shapiro-Wilk W Normality Test 0.75 0.841 6.3E-04 Non-Normal Distribution Survival Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 0.000 0.00%	Attribute	Test				Test Sta	it C	Critical	P-Value	Decision((α:1%)		
Distribution Shapho-Wilk W NonHality Test 0.73 0.841 6.3E-04 Non-Normal Distribution Survival Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 0.000 0.00% 0.00% 0.00% 1819-DW35-SC-5R 8 0.925 0.838 1.000 0.950 0.700 1.000 0.037 11.19% 7.50% Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0.000% 0.00% </td <td>Variances</td> <td>Variance Shopiro V</td> <td>Ratio F Test</td> <td>olity Teat</td> <td></td> <td>8.63E+1</td> <td>38</td> <td>3.89</td> <td><1.0E-37</td> <td>Unequal V</td> <td>/ariances</td> <td></td> <td></td>	Variances	Variance Shopiro V	Ratio F Test	olity Teat		8.63E+1	38	3.89	<1.0E-37	Unequal V	/ariances		
Survival Rate Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 1.000 0.000 0.00% 0.00% 0.00% 1819-DW35-SC-5R 8 0.925 0.838 1.000 0.950 0.700 1.000 0.037 11.19% 7.50% Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0 0.00% 0.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.40% 8.05% Graphics Image: Content of the set of the s	Distribution	Shapiro-v		anty rest		0.75		.841	6.3E-04	Non-Norm	al Distribut	ion	
Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 0.000 0.00% 0	Survival Rate Sum	mary											
CE_0918HA_C1 CS 8 1.000 1.000 1.000 1.000 0.000 0.00% 0.00% 1819-DW35-SC-5R 8 0.925 0.838 1.000 0.950 0.700 1.000 0.037 11.19% 7.50% Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 1.41 0 0.00% 0.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics	Sample	Code	Count	Mean	95% LCL	95% UC	LN	Nedian	Min	Мах	Std Err	CV%	%Effect
Is 19-DW 35-SC-SR 8 0.925 0.838 1.000 0.950 0.700 1.000 0.037 11.19% 7.50% Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0 0.00% 0.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics	CE_0918HA_C1	CS	8	1.000	1.000	1.000	1	.000	1.000	1.000	0.000	0.00%	0.00%
Angular (Corrected) Transformed Summary Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 1.41 0.00% 0.00% 0.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics Image: Company of the second seco	1019-DV035-SC-5R		8	0.925	0.838	1.000	0	.950	0.700	1.000	0.037	11.19%	7.50%
Sample Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 0.00% 0.00% 0.00% 8.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics Image: Colored of the second of the se	Angular (Corrected	d) Transfor	rmed Summ	ary									
CE_0918HA_C1 CS 8 1.41 1.41 1.41 1.41 1.41 0 0.00% 0.00% 1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics	Sample	Code	Count	Mean	95% LCL	95% UCI	LN	Nedian	Min	Мах	Std Err	CV%	%Effect
1819-DW35-SC-5R 8 1.3 1.17 1.42 1.33 0.991 1.41 0.0523 11.40% 8.05% Graphics 0.05 0.05 0.05 0.05 0.05 0.05 0.05 as 0.3 0.05 0.05 0.05 0.05 0.05	CE_0918HA_C1	CS	8	1.41	1.41	1.41	1	.41	1.41	1.41	0	0.00%	0.00%
Graphics	1819-DVV35-SC-5R	_	8	1.3	1.17	1.42	1	.33	0.991	1.41	0.0523	11.40%	8.05%
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Graphics												
0.9 0.8 0.7 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.7 0.6 0.6 0.05 0.00 -0.05 -0.05 -0.05 -0.05 -0.15 0.00 -0.05 -0.15 0.00 -0.05 -0.15 0.00 -0.15 0.00 -0.15 0.00 -0.15 0.00 -0.15 0.00 -0.15 -0.1	1,0							0.20					
0.5 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.9			11/10/	11.			0.15					
0.5 0.7 0.6 0.5 0.4 0.3 0.3 0.3 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.6 0.6 0.6 0.6 0.05 0.05 0.05 0.05 0.00 0.05 0.00 0.05 0.								0.10					
0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.8							0.05					
0.6 32 5 6.5 0.4 0.3 0.5 0.4 0.3 0.5 0.4 0.5 0.5 0.5 0.5 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.	0.7						angle	0.00 -			-8-0-8-		
0.5 0.4 0.3 0.0 0.0	0.6						Cent.	-0.05					
6 0.4 -0.15 0.3 -0.20	22 188 0.5							-0.10					
0.3	පි ග 0.4							-0.15					
	0.3							-0.20		1			
0.2 -0.25	0.2							-0.25					
-0.30 -	0.1							-0.30 -					
-0.35								-0.35			10		
CE_0918HA_C1 1619-DW35-SC-SR -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Rankits	0.0	CE_0918HA_C1		1819-DW35-S	C-SR			-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.0	1 1.5	2.0

Analyst: 16 QA: _____

CETIS Ana	alytical Re	port					Repo	ort Date:	23	Oct-18 09:	31 (p 1 of 4)
							Test	Code:	CE_0918	BHA_C1 2	0-2614-6070
Hyalella 10-d	Survival and	Growth Sed	ment Test							Pacit	ic EcoRisk
Analysis ID:	01-4556-798	2 En	dpoint: Me	an Dry Weig	jht-mg		CET	S Version:	CETISv1	1.9.2	
Analyzed:	23 Oct-18 9	31 An	alysis: Pa	rametric-Two	o Sample		Offic	ial Results:	Yes		
Data Transfor	rm	Alt Hyp					Comparis	on Result			PMSD
Untransformed	d	C > T					1819-DW	35-SC-5R fa	iled mean o	dry weight-r	n 14.90%
Equal Variand	ce t Two-Sam	ple Test									
Sample I	vs Sample	11	Test Stat	Critical	MSD DF	P-Type	P-Value	Decision(α:5%)		
Control Sed	1819-D	W35-SC-5R*	3.96	1.76	0.014 14	CDF	7.2E-04	Significant	Effect		
ANOVA Table)										
Source	Sum Se	uares	Mean Squ	Jare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.00396	05	0.003960	5	1	15.7	0.0014	Significant	Effect		
Error	0.00354	22	0.0002530)	14						
Total	0.00750	28			15						
Distributional	l Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision(x:1%)		
Variances	Varianc	e Ratio F Tes	st		3.17	8.89	0.1512	Equal Varia	ances		
Distribution	Shapiro	-Wilk W Norr	nality Test		0.945	0.841	0.4179	Normal Dis	stribution		
Mean Dry Wei	ight-mg Sumr	nary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0918HA_0	C1 CS	8	0.094	0.0848	0.103	0.096	0.079	0.114	0.0039	11.72%	0.00%
1819-DW35-S	C-5R	8	0.0625	0.0461	0.0789	0.0643	0.0257	0.09	0.00693	31.36%	33.47%
Graphics											
0.12											1
						0.030					
		- 11				0.030				۴	-
						0.030 0.025 0.020					-
0.10	11161					0.030 0.025 0.020 0.015			,		-
0.10	11181	~				0.030 0.025 0.020 0.015					-
0.10 0.08		-		Reject Nid	bered	0.030 0.025 0.020 0.015 0.010 0.005				* *	-
0.10 0.08 89 45		2	-	Reject Nuž	Centered	0.030 0.025 0.020 0.015 0.005 0.005	F= • = - = 3 #				-
0.10 0.08 Beu 10 0.06 0.06		2		Reject Núl	Centered	0.030 0.025 0.015 0.010 0.005 0.005					
0.10 0.08 0.08 0.06 0.06 0.06	1.1.47			Reject Nid	Centered	0.030 0.025 0.020 0.015 0.005 0.000 0.000 0.000 0.000 0.000	7-5 ° 2-1-5 5		•••		
0.10 80.0 60.0 60.0 60.0 60.0 8 60.0 6 8 90.0 90.0	1.1.87		-1.1.18	Reject Nul	Centered	0.030 0.025 0.020 0.015 0.030 0.030 0.005 -0.005 -0.010 -0.015	• •	••••	••••		
0.10 80.0 90.0 Keipteun 0.06 Weint Did Neipteun 0.04	///8/		- 1 - 1 - 1 - 1 - 1	Reject Nuž	Centered	0.030 0.025 0.020 0.015 0.005 0.005 -0.005 -0.005 -0.010 -0.015 -0.020	• • •	••••			
0.10 83.0 60.0 Wearn Dr3 Meidtrame				Reject Nul	Centered	0.030 0.025 0.020 0.015 0.005 0.005 0.005 -0.005 -0.010 -0.015 -0.020 -0.025	• • •				
0.10 80.0 60.0 60.0 60.0 60.0 80.0 80.0 80.				Reject Núl	Centered	0.030 0.025 0.015 0.010 0.005 0.000 0.000 -0.005 -0.010 -0.015 -0.020 0.025 -0.030	• • •				
0.10 0.08 Empty ACC 0.06 0.04 0.04				Reject Núl	Centered	0.030 0.025 0.010 0.05 0.000 0.005 0.000 -0.005 -0.005 -0.010 -0.015 -0.020 -0.025 -0.030	• • •		••••		
0.10 80.0 60.0 60.0 60.0 7 60.0 8 8 9 0.0 8 0.0	CE_0918HA_C1		1819-DW35-	Reject Nul	Centered	0.030 0.025 0.010 0.05 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.015 0.020 0.010 0.025 0.000 0.025	-L.5 -1.0	-0.5 0.0	0.5 1.0	0 1.5	2.0

004-996-743-9

Analyst Rb QA:MM

121.

-

Client:	Condo	r Earth	Project#:	29417	-	Organism Log #:	11205		Age: 12-102
Species:	Hyalell	a azteca	Test ID#:	80294	5	Organism Supplier:		А	BS
			Test M	laterial		Water Qu	ality Measure	nents	
Day	Date		Lab C	ontrol		Parameter	Value	Meter ID	Sign-off:
	5		# Live O	raanieme		pH	7,82	DHDS	AM Change:
0	0/2/10	AID	B IO	C	DIA	DO (mg/L)	92	Rinio	WQ: NM
Ŭ	117010	E	F	G	H IO	Conductivity (uS/cm)	<u>017</u>	5016	Initiation Time:
		10				Alkalinity (mg/L)	1 551		Initiation Counts:
						Hadrant (mg/L)	1 10 (4		Confirmation Counts:
						Hardness (mg/L)	120		SE
						Ammonia (mg/L)	21,00	VK5800	PM Feed: J
						Temp. (°C)	22.0	48A	
			# of Mo	ortalities		Old D.O. (mg/L)	7.3	RDII	AM Change: AR WQ: AR
1	10/1/18	^A O	^B O	° o	p O	New D.O. (mg/L)	7.6	RDII	Mortality Counts: AR
		e Ó	FØ	^G O	н О	Temp. (°C)	23.1	48A	PM Change 6 PM Feed
			# of Mo	ortalities		Old D.O. (mg/L)	7.4	RUIZ	AM Change: OM WQ: OM
2	10/2/18	A Q	BO	° Ə	DO	New D.O. (mg/L)	8.1	RD12	Mortality Counts:
		e ()	F O	GΔ	н О	Temp. (°C)	23.2	48A	PM Change PM Feed RAP
			# of Mo	ortalities		Old D.O. (mg/L)	5.9	ROII	AM Change: DH WQ: DH
3	Intalia	A CZ	BG	° O	P ()	New D.O. (mg/L)	6.3	ROII	Mortality Counts DH
	w1)118	e O	FO	G ()	н ()	Temp. (°C)	23.2	48A	PM Changer PM Feet
			# of M	ortalities		Old D.O. (mg/L)	83	RN 3	AM Change:
4	10/4/19	A ()	B C)	c c)	D C)	New D.O. (mg/L)	8.4	RD13	Mortality Counts: D
	1110	E O	FD	° D	H D	Temp. (°C)	73.0	UBA	PM Change M PM Feed
			# of M	rtalities		Old D.O. (mg/L)	7.2	Detra	AM Change: WQ:
5	SOV- 10	A G	B	C O	PO	New D.O. (mg/L)	-1913	RDIO	Mortality Counts:
	allchi	EO	FO	GO	н	Temp (°C)	1211	KOIU	PM Change: pp PM Feed DP
			1 0			Old D.O. (mg/L) M	44 2/1	- bN12	AM Change: ALL WQ: ALL
6	alita	Α Γ)	# OI IVIO	c n	D ()	New D.O. (mg/L)	74	10013	Mortality Counts:
0	10/0/18	E	F O	GA	н Л	T C M	23-70	1100	PM Change: DV Ford
			0	0	0		BOR D	MAH	AM Change: WO:
	10/18	A 0	# of Mo	ortalities		Old D.O. (mg/L)	7.8	KD12	Mortality Counts
1	10/1/10	<u> </u>	<u> </u>		<u> </u>	New D.O. (mg/L)	8.1	RD12	DM Change a
		<u> </u>	r 0	° 0	" O	Temp. (°C)	Eminis CS.L	48A	AM Charge: A WO bef
			# of Me	ortalities	D	Old D.O. (mg/L)	4.3	KDIO	AM Change KG WQ. KG
8		^A 6	B 0	0	0	New D.O. (mg/L)	7.0	KDIG	Mortality Counts 4
	10/8/18	E Ø	F 0	GO	вО	Temp. (°C)	23.2	48A	PM Change: AR PM Feed: AR
			# of Mo	ortalities		Old D.O. (mg/L)	5.7	Rido	AM Change: 18 WQ: 74
9	10/9/18	A O	вО	° ()	P ()	New D.O. (mg/L)	6.4	RDIO	Mortality Counts:
		e C	F ()	G ()	н ()	Temp. (°C)	23.3	48A	PM Change: 74 PM Feed: 74
			# A	live		pH	7.57	PH19	WQ: 744
10	10/10/18	A	BIO	c 10	D 10	D.O. (mg/L)	6.9	RD13	Termination Counts: NIS
	(, (,)	E	FUO	G 10	H LO	Conductivity (µS/cm)	453	EC13	Termination Time: 1030
						Alkalinity (mg/L) J	62.4		
						Hardness (mg/L) √	128		
						Ammonia (mg/L)	64.00	743800	
						Temp. (°C)	23.6	480	
		1943-1444-1444-1463-1863-18	*2*5*3*3*8*8*8*8*8*8*8*8*8	(\$PENENE)\$\$\$\$#\$E\$#\$E\$			0.2.9	1011	

-10

. .

Species: Huddla canco Test D#: Organism Supplier: ABS Day Date Test Material Water Quality Measurements Sign-off: 0 $4 f_{2d}/f_{8}$ $B _{10}$ $O _{10}$ $D _{10}$ $O _{10}$ $P _{12}$ $M _{12}$ $M _{12} _{1$	Client:	Condo	r Earth	Project#:	29417	<u></u>	Organism Log #:	11205		Age:l	2-13/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Species:	Hyalell	a azteca	Test ID#:	80294		Organism Supplier:		Α	BS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_		_					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Day	Data		Test M	laterial		Water Qu	ality Measure	nents	Sia	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Day	Date	1819	-DW35-	SC5R		Parameter	Value	Meter ID		,8-011:
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				# Live C	rganisms		pH	7,74	PHZS	AM Change:)	M
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	9/30/18	A 10	^B lO	^C 10	D 10	D.O. (mg/L)	812	ROIZ	WQ: DM	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			E (O	FIO	G IO	H IO	Conductivity (µS/cm)	421	E(12	Initiation Time:	1410
$\frac{1}{1} \operatorname{lochest}(\operatorname{ngt}) \vee 1/4 \cup 1/4 \cup$							Alkalinity (mg/L)	1 52.4		Initiation Count	s:JL
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							Hardness (mg/L)	V116		Confirmation C	ounts: Sc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							Ammonia (mg/L)	41.00	DR3800	PM Feed:	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							Temp. (°C)	22.4	48A		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	6.7	RDII	AM Change: A	r ^{WQ:} Ar
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	10/1/18	A O	ВО	° O	D O	New D.O. (mg/L)	7.9	RDII	Mortality Count	s: AR
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			е О	FO	^G O	н О	Temp. (°C)	23.2	48A	PM Change: KG) PM Feed:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	7.4	RNIZ	AM Change: 0/	h WQ: ()M
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	0/2/18	A O	вд	c ()	DO	New D.O. (mg/L)	7,8	ROIZ	Mortality Count	s1) M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	EO	FO	G ()	н О	Temp. (°C)	22.9	USA	PM Change	> PM Feed
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	5.7	RDII	AM Change: D	WQ: DH
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Inia	A ()	В	C O	D U	New D.O. (mg/L)	6.2	ROII	Mortality Count	[®] . Dн
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15118	εO	FO	G ()	И О Н	Temp. (°C)	23.02	48A	PM Change:	PM Feel
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	2.0	RDIZ	AM Change:	MWQ: M
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	10/4/10	A D	B 6	C A	D ()	New D.O. (mg/L)	8.3	RD13	Mortality Count	s:i) M
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.1.1.0	Εð	FO	GO	н ()	Temp. (°C)	23.0	48A	PM Change:	M PM Feed:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		# of M	ortalities		Old D.O. (mg/L)	7.1	PULL	AM Change RAP	WORAD
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	1051146	A O	вО	° O	D O	New D.O. (mg/L)	74	2010	Mortality Count	S: RAD
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		19710	E ()	F ()	° O	н О	Temp. (°C)	231	454	PM Change:	PM Feed: AP
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	108	RDIS	AM Changer	1 WQ: MY
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	boldie	A ()	BO	C O	D D	New D.O. (mg/L)	79	RDB	Mortality Count	SI MMA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		01010	e O	FO	G D	н б	Temp. (°C)	22.8	488	PM Change	PM Feed:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				# of M	ortalities		Old D.O. (mg/L)	6.8	ED12	AM Change: 4	WQ: XE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	10/-1/18	^ ()	в	c ()	D (C	New D.O. (mg/L)	7.9	RD12	Mortality Count	s: 4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			E ()	F ()	G C	н О	Temp. (°C)	73.0	48A	PM Change: 🏹	PM Feed: 1
$8 \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $				# of M	ortalities		Old D.O. (mg/L)	59	Rolly	AM Change: Vi	WQ KG
$\frac{10 0 17}{9} = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = $	8		A ()	B D	C D	D ()	New D.O. (mg/L)	7.4	RAIN	Mortality Count	sik(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10/18/197	E ()	FD	G ()	н ()	Temp. (°C)	22.1	49.4	PM Change:	R PM Feed: AD
9 $10 4 18$ A B C C D D O New D.O. (mg/L) 7.1 RD 10 Mortality Counts: $\frac{1}{2}$ E C F C G D H O Temp. (°C) 2.3.2 $48A$ PM Change PM Feed: $\frac{1}{2}$ 10 $10 10 18$ A D B C Q D D O. (mg/L) 5.9 RD 3 Termination Counts: $\frac{8MC}{10}$ E O F O G H O COnductivity (μ S/cm) 421 E C (β Termination Time: $\frac{1}{10}$ H O Alkalinity (mg/L) $\frac{1}{2}$ 58.8 Hardness (mg/L) $\frac{1}{105}$ Descol		W CHUZ		# of M	ortalities		Old D.O. (mg/L)	~ 9	RDIG	AM Change: X	- WQ: 7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	10/4/18	A D	B O	c C	D ()	New D.O. (mg/L)	5.1	RDIO	Mortality Count	s: 14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			E ()	FC	G O	н О	Temp. (°C)	23.2	LARA	PM Change A	PM Feed: 74
$\frac{10}{10 10 18} = \frac{10}{10} $				# A	live		pH	7.45	PHIS	WQ: 14	
$\frac{1}{1} = \frac{1}{10000000000000000000000000000000000$	10	Taliolis	A ID	B	c a	D	D.O. (mg/L)	5.9	RD13	Termination Cou	ints: SM /.
$\frac{\text{Alkalinity (mg/L)}}{\text{Hardness (mg/L)}} = \frac{58.8}{1200}$		-li-li 2	EIO	F	G J	на	Conductivity (uS/cm)	421	ECIB	Termination Tim	e MID
Hardness (mg/L) / /2 U Ammonia (mg/L) //5 DP3%01							Alkalinity (mg/L)	58.8			
Ammonia (mg/L)							Hardness (mg/L). /	120			
							Ammonia (mg/L)	1.05	DR3800		

10-Day Hyalella azteca Sediment Toxicity Test Data

Temp. (°C)

23.2

48A

Client:	Condor Ea	rth	Project #:	29417	Balance ID: Balloy
Sample ID:	1819-DW35-SC	-5R	Tare Wt Date:	1019/15	Sign-Off: RAP
Test ID #:	80294		Final Wt Date:	10/13/18	Sign-Off: RAD
			- V		
Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# organisms	Ave Weight (mg)
1	Control A	53.27	54.24	(0	0.097
2	Sediment B	65.42	66.39	10	0,097
3	C	60.77	61.91	60	0.114
4	D	66-31	67.11	10	0.080
5	E	69.45	70.40	lo	0.095
6	F	591.250	60.25	10	0.097
7	G	65.00	65.93	٥	0.093
8	Н	55.70	59.49	lo	0.079
9	1819-DW35- A	66.03	1413ANP 66.61	10	0.058
10	SCSR B	67.34	67.82	10	0.048
11	С	57.35 70.12	70.83	9	0.0789
12	D	57.35	57.94	9	0.0656
13	E	6150	62.13	10	0.063
14	F	58,71	59.61	10	0.090
15	G	63.45	63.63	٢	0.0257
16	Н	63.54	64.18	9	0.0711
QA21		57.1%	57.17		

Hyalella azteca Weight Data Sheets
CETIS Analytical Report									ort Date: Code:	23 CE_091	Oct-18 09: 8HA_C1 2	31 (p 4 of 4) 0-2614-6070
Hyalella 10-d Surv	vival and G	rowth Sedii	nent Test								Paci	fic EcoRisk
Analysis ID: 06- Analyzed: 23	-3709-8280 Oct-18 9:3	Enc 0 Ana	d point: Su alysis: No	rvival Rate nparametric	-Two Sam	ple		CET	S Version:	CETISv : Yes	1.9.2	
Data Transform		Alt Hyp						Comparis	on Result			PMSD
Angular (Corrected)	C > T						1819-DW	35-FD failed	l survival ra	te	5.81%
Wilcoxon Rank Su	ım Two-Sa	mple Test										
Sample I vs	Sample I	It	Test Stat	Critical	Ties D	F P-T	Гуре	P-Value	Decision	(α:5%)		
Control Sed	1819-DW	/35-FD*	52	n/a	1 1	4 Exa	act	0.0385	Significan	t Effect		
ANOVA Table												
Source	Sum Squ	lares	Mean Squ	lare	DF	FS	Stat	P-Value	Decision	(a:5%)		
Between	0.054718		0.054718		1	5.9	1	0.0291	Significan	t Effect		
Error	0.129571		0.0092551		14							
Total	0.184289				15							
Distributional Test	ts											
Attribute	Test				Test Sta	t Crit	tical	P-Value	Decision(α:1%)		
Variances	Variance	Ratio F Test			7.29E+13	3 8.89	9	<1.0E-37	Unequal V	/ariances		
Distribution	Shapiro-V	Wilk W Norm	ality Test		0.826	0.84	41	0.0062	Non-Norm	al Distribut	ion	
Survival Rate Sum	imary											
Sample	Code	Count	Mean	95% LCL	95% UCI	_ Me	dian	Min	Max	Std Err	CV%	%Effect
CE_0918HA_C1	CS	8	1.000	1.000	1.000	1.00	00	1.000	1.000	0.000	0.00%	0.00%
1819-DW35-FD		8	0.925	0.851	0.999	0.95	50	0.800	1.000	0.031	9.58%	7.50%
Angular (Corrected	d) Transfor	rmed Summ	агу									
Sample	Code	Count	Mean	95% LCL	95% UCL	. Mea	dian	Min	Max	Std Err	CV%	%Effect
CE_0918HA_C1	CS	8	1.41	1.41	1.41	1.41	1	1.41	1.41	0	0.00%	0.00%
1819-DW35-FD		8	1.3	1.18	1.41	1.33	3	1.11	1.41	0.0481	10.51%	8.28%
Graphics												
1.0	255					0:	20					
2.0	0		1110	11.								
0.9						0.1	.15					
0.8						0.:	10			• •		
0.7						28						
0.6						enter r: An	05					
Rate						<mark>3 د</mark> ٥.0	00					
L'ANA										976 • 1976		
07 D.4						-0.0	05	•••				
0.3						-0.1	10	1				
0.2						.0.1	; ;					
0.1						* U .1						
0,0						-0.2	-2.0	-1.5 -1.0	-0.5 0.0	0.5 17) 15	20
	CE_0918HA_C1		1819-DW35-	FD					Rankits	4.5		

Analyst: REA QA:M

CETIS A	nalyti	ical Repo	ort					Repo Test	ort Date: Code:	23 CE 0918	Oct-18 09:: 8HA_C1 2	31 (p 2 of 4) 0-2614-6070
Hyalella 10	-d Surv	vival and Gr	owth Sedir	nent Test							Pacif	fic EcoRisk
Analysis ID Analyzed:): 10- 23	-3945-9151 Oct-18 9:31	Enc	lpoint: Me	an Dry Weig	ht-mg		CETI	S Version:	CETISv	1.9.2	
		000100.01			ametric 1 we	olampic		Offic	. 165			
Data Trans	form		Alt Hyp					Comparis	on Result			PMSD
Untransform			C>1			_		1819-DW	35-FD failed	I mean dry	weight-mg	9.03%
Equal Varia	ance t 1	wo-Sample	Test									
Sample I	VS	Sample II		Test Stat	Critical	MSD DF	Р-Туре	P-Value	Decision	(α:5%)		
Control Sed		1819-DW3	35-FD*	8.74	1.76	0.008 14	CDF	2.4E-07	Significan	t Effect		
ANOVA Tat	ole											
Source		Sum Squa	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision	(α:5%)		
Between		0.0071005		0.0071005		1	76.5	4.8E-07	Significan	t Effect		
Error		0.0013001		9.287E-05		14						
Total		0.0084006				15						
Distributior	nal Test	ts										
Attribute		Test				Test Stat	Critical	P-Value	Decision	α:1%)		
Variances		Variance F	Ratio F Test			1.89	8.89	0.4208	Equal Var	iances		
Distribution		Shapiro-W	ilk W Norm	ality Test		0.964	0.841	0.7364	Normal Di	stribution		
Mean Dry W	/eight-ı	mg Summa	гу									
Sample		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0918HA	_C1	CS	8	0.094	0.0848	0.103	0.096	0.079	0.114	0.0039	11.72%	0.00%
1819-DW35	-FD		8	0.0519	0.0452	0.0586	0.0515	0.0411	0.0633	0.00284	15.46%	44.82%
Graphics												
0.12							0.020				•	
											1	
0.10							0.015				1	
	1	1.18111					0.010					
0.08					Reject Null	ered					•	
ght-mg						Cent				••••		
0.06							0.000		•			
Меал							-0.005		•			
0.04							-0.010	1				
0.02 —							-0.015					
							0.000					
0.00		CE_0918HA_C1		1819-DW35	FD		-0.020 -2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.0	0 1.5	2.0

17/19

Project#:	29417		Organism Log #:	11205		Age: 12-13d			
Test ID#:	80295		Organism Supplier:		A	ABS			
Test N	laterial		Water Qua	ality Measuren	nents	Cian a Ci			
W35	-FD		Parameter	Value	Meter ID	Sign-oii:			
# Live C	rganisms		pH	7.59	PH25	AM Change: DM			
0]	^C 10	DIO	D.O. (mg/L)	8,1	ROIZ	WQ: 0 M			
10	GIU	H IO	Conductivity (µS/cm)	,425	E(12	Initiation Time: 1410			
			Alkalinity (mg/L)	1,55,6		Initiation Counts: J			
			Hardness (mg/L)	122		Confirmation Counts: SF			
			Ammonia (mg/L)	21,00	DR3600	PM Feed: J			
			Temp. (°C)	22,4	48A				

Client:

Condor Earth

Species:	Hyalella	a azteca	Test ID#:	80295	_	Organism Supplier:		A	BS
			Test M	Iaterial		Water Qu	ality Measure	nents	
Day	Date	1819	-DW35	-FD		Parameter	Value	Meter ID	Sign-off:
	0		# Live O	rganisms		pH	7.59	PH25	AM Change: DM
0	1/20/18	A 10	^B (O	^C 10	D 10	D.O. (mg/L)	8,1	RDIZ	WQ: DM
	1010	E 10	FIO	GIU	H IO	Conductivity (µS/cm)	,425	E(12	Initiation Time: 1410
						Alkalinity (mg/L)	1,55,6		Initiation Counts:
						Hardness (mg/L)	122.		Confirmation Counts: 50
						Ammonia (mg/L)	21,00	DR3600	PM Feed:
						Temp. (°C)	22,4	48A	
			# of Me	ortalities		Old D.O. (mg/L)	6:7	RD II	AM Change: AR WQ: AR
1		A O	BO	° O	DO	New D.O. (mg/L)	٦.5	RDII	Mortality Counts: AR
	10/11/8	^e O	FO	^G O	н О	Temp. (°C)	23.1	48A	PM Change PM Feed
			# of Me	ortalities		Old D.O. (mg/L)	7.5	RUIZ	AM Change: WQ: UM
2	10/2/18	A O	вО	c ()	D ()	New D.O. (mg/L)	7.7	RD12	Mortality Counts
		E O	F 🔿	G∂	н О	Temp. (°C)	22.9	48A	PM Change PM Feed.
		-	# of Mo	ortalities		Old D.O. (mg/L)	5.4	RDII	AM Change: DH WQ: DH
3	10/3/18	A O	ВО	° O	D O	New D.O. (mg/L)	6.1	RDH	Mortality Counts: DH
	, in the second	εO	FO	^G Ø	Н	Temp. (°C)	23.1	48A	PM Change 4 PM Feel 46
			# of Mo	ortalities		Old D.O. (mg/L)	7.9	RD13	AM Change: UM WQ: UM
4	10/11/18	A O	вО	° ()	D O	New D.O. (mg/L)	8.2	RD13	Mortality Counts
		e O	FO	g ()	б ^н	Temp. (°C)	23,1	HZA	PM Change OM PM Feed OM
			# of Mo	ortalities		Old D.O. (mg/L)	6.8	RDIO	AM Change PAR WQ: RAP
5	10511-6	A O	вО	^c Ø	D D	New D.O. (mg/L)	7.2	RDIO	Mortality Counts:
		Е	FO	G ()	нО	Temp. (°C)	23.3	484	PM Change: AR PM Feed: AR
			# of Mo	ortalities		Old D.O. (mg/L)	6.9	PDB	AM Change: MYC WQ: Myc
6	10/6/18	* D	в	° O	D 0	New D.O. (mg/L)	7.8	RD13	Mortality Counts: MM
	10100	E Ó	F ()	G D	нÔ	Temp. (°C)	22.7	48A	PM Change PM Feed
			# of Me	ortalities		Old D.O. (mg/L)	6.7	KD12	AM Change: A WQ
7	10/18	^ O	вО	° O	° O	New D.O. (mg/L)	7.9	RDIZ	Mortality Counts: 14
		е ()	F ()	G ()	н О	Temp. (°C)	23.1	48A	PM Change: 7 PM Feed: 7
			# of Me	ortalities		Old D.O. (mg/L)	5.8	PDIU	AM Change: KG WQ: KG
8		^ O	в 0	^c O	D ()	New D.O. (mg/L)	7.3	RDID	Mortality Counts: KG
	10/8/18	E ()	F D	GU	нυ	Temp. (°C)	23.1	467	PM Change: AR PM Feed: A
			# of Mo	ortalities		Old D.O. (mg/L)	5.3	RDIO	AM Change: 19 WQ: 74
9	10/2/18	^ ()	вО	° ()	D 0	New D.O. (mg/L)	7.1	RDIO	Mortality Counts: 73
		e ()	FO	G ()	н (Temp. (°C)	23.2	48A	PM Change: 79 PM Feed: 79
			# A	live	In	pH	7.49	PH19	WU: 34
10	10/10/18	A 10	BlD	° 9	° 9	D.O. (mg/L)	6.2	FDB	Termination Counts: NB
		e 8	F ID	610	н 8	Conductivity (µS/cm)	428	EC13	remination time: M2D
						Alkalinity (mg/L)	58		
						Hardness (mg/L)	119		
						Ammonia (mg/L)	1.05	DR3800	
						Temp. (°C)	23.3	48A	

Client:	Condor Ea	rth	Project #:	29417	Balance ID: <u>Bal04</u>	
Sample ID:	1819-DW35-F	D	Tare Wt Date:	1019115	Sign-Off: RAP	
Test ID #:	80295		Final Wt Date:	10/13/14	Sign-Off: PAP	
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight	
	Replicate	(mg)	(mg)	" organisms	(mg)	
1	Control A	53.27	54.24	10	0,097	
2	Sediment B	65.472	66.39	10	0.097	
3	С	60.77	61,91	10	0.114	
4	D	66.31	67.11	10	0.080	
5	E	19.15	70.40	(0	0.095	
6	F	59.240	60.25	10	0.097	
7	G	(5.00	65.93	10	0.093	
8	Н	546.70	59.49	[U	0.079	
17	1819-DW35- A	64.99	65.52.	10	0.053	
18	FD B	62.198	62.79	/0	0.061	
19	С	62.85	63.22	9	0.0411	
20	D	58.51	59.08	9	0.0633	
21	E	65.25	65.63	8	0.0475	
22	F	59.83	60.26	10	0.043	
23	G	63.24	63.90	16	0.056	
24	Н	57.65	5%.05	8	0.050	
QA\$2		67.958	69.01		0.03	

Hyalella azteca Weight Data Sheets

Sediment Toxicity Lab Report December 3, 2018 at SC-5R After Storm Event

This page intentionally left blank for printing purposes

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 January 4, 2019

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected December 3, 2018. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.										
Sample Station	Toxicity Present Relative to Lab Control?									
Sample Station	Survival	Growth								
SC-5R	YES	no								
FD YES YES										

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 29660.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected December 3, 2018

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 (707) 207-7760

January 2019

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected December 3, 2018

Table of Contents

	Page
1. INTRODUCTION	1
2. SEDIMENT TOXICITY TEST PROCEDURES	1
2.1 Receipt and Handling of the Sediment Samples	1
2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca	1
3. RESULTS	3
4. SUMMARY AND CONCLUSIONS	3
4.1 QA/QC Summary	3

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples
- Appendix BTest Data and Summary of Statistics for the Evaluation of the Toxicity of
Stockton Stormwater Program Sediment Samples to Hyalella azteca

i

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on December 3, 2018. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On December 3, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program.									
Sample Station	Date Collected	Date Received							
SC-5R	12/3/18	12/4/18							
FD	12/3/18	12/4/18							

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

The *H. azteca* used in this testing were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the laboratory, the amphipods were maintained in tanks containing Lab Water Control medium at 23°C and were fed a commercial Yeast-Cerophyll[®]-Trout chow (YCT) food amended with freeze-dried *Spirulina*.

The Control treatment sediment for this testing consisted of a composite of reference site sediments that have been maintained under culture at the PER lab for >3 months. The sediment samples were tested at the 100% concentration only. There were eight replicates for each test

treatment, each replicate container consisting of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540 µm mesh NITEX attached to the top of the beaker with silicone sealant. Each sediment sample was homogenized prior to loading of sediment into the test replicates. For each sediment, approximately 100 mL of sediment was then loaded into each of the test replicate containers. Each test replicate was then carefully filled with clean Lab Water Control medium (Standard Artificial Medium [SAM-5S] water). The test replicates with sediments and clean overlying water were established approximately 24 hours prior to the introduction of the amphipods, and were placed in a temperature-controlled room at 23°C during this pre-test period.

After this initial 24 hour period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. For each test treatment, a small aliquot of the renewed overlying water was then collected from each of the eight replicates and composited for measurement of "initial" water quality characteristics (pH, dissolved oxygen [D.O.], conductivity, alkalinity, hardness, and total ammonia). The testing was then initiated with the random allocation of ten 10-11 day-old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then placed in a temperature-controlled room at 23°C. At the time of test initiation, eight replicates of 10 randomly-selected organisms were collected, dried, and weighed (described below) to determine the mean dry weight of the test organisms at test initiation (T_0).

Each day, for the following nine days, each test replicate was examined and any dead amphipods were removed via pipette and the mortality recorded. A small aliquot of the overlying water in each of the eight replicates for each test treatment was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the eight replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fell to measure was then collected and composited as before for measurement of "new" D.O., after which each replicate was fell 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, testing was terminated. An aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate container were then carefully sorted and sieved and the number of surviving amphipods determined. The surviving organisms were euthanized in methanol, rinsed in de-ionized water, and transferred to small pre-tared weighing pans, which were placed into a drying oven at 100°C. After drying for approximately 24 hours, the pans were transferred to a desiccator to cool, and then weighed to the nearest 0.01 mg to determine the mean dry weight per surviving organism for each replicate. The resulting survival and growth (mean dry weight) data were then analyzed to evaluate any impairment due to the sediments. Statistical analyses were performed using CETIS[®] (TidePool Scientific Software, McKinleyville, CA).

5/20

3. RESULTS

Test results are summarized in Table 2. There were significant reductions in survival and growth in the SC-5R sediment sample and a significant reduction in the growth of the field duplicate (FD) sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. 1	Table 2. Data summary for the Stockton Stormwater Program sediment samples.										
Test Treatment	% Survival	% Reduction	Toxic? (Y/N)	Mean dry weight (mg)	% Reduction	Toxic? (Y/N)					
Control	100	N/A	N/A	0.080	N/A	N/A					
SC-5R	SC-5R 63.8* 36.3% Y 0.105 -31.0% N										
FD	FD 82.5* 17.5% Y 0.042* 47.3% Y										

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were significant reductions in survival and growth in the SC-5R sediment sample and a significant reduction in growth in the field duplicate (FD) sample.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.									
Sample Station	Toxicity Present Rel	ative to Lab Control?							
Sample Station	Survival	Growth							
SC-5R	YES	no							
FD YES YES									

4.1 QA/QC Summary

Test Conditions – Due to the observation of low D.O. in the evening of the test initiation day, the tests were aerated to eliminate hypoxic conditions during the test. Otherwise, all test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

6/20

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

This page intentionally left blank for printing purposes

						11mm				С	on	do	r E	lar	th	Τe	echnolo	ogies	s. Inc
Sampl	le Result	ts TAT: 🔲 Rush 🔽	Standard				×			Box 3905	/21663 Bri	an Lane	7 188 F	rank West	Circle, Sui	te I	2941 Sunrise Blvd, Suite		Ashby Road, Suite B
SHIP	PED TC	<u>):</u>				CC	OND	OR	20 ³⁰ 20	9.532.0361 9.532.0773	fax	Ŀ	209.2 209.2	ton, CA 9 34.0518 34.0538 fa	15206 ax	L	Rancho Cordova, CA 95 916.783.2060 916.783.2464 fax	742 Mer 209 209	ced, CA 95348 388.9601 388.1778 fax
Pacif	ic EcoF	Risk								SEND	RESU	JLTS TC	<u>):</u>						
2250	Corde	lia Road									NA	ME:	-	wicne mkinf(lorea	Kipt		
Fairfi	eld, CA	94534 (707) 207-	7760								E-N E-N	IAIL:	-			uorea	i ui.com		
											12 14		PLEA	SEE	X/FM			DESCNAN	
PROJ	ECTNA	ME/LOCATION: CO	OS Urban Disch	narg	e	EDF RE	SULT	SRE	QUIRI	ED 🗸 🛛	ES []NO	TEEA		SIT	E GLC	DBAL ID: CEDEN	V FORMAT	REQUESTED
PROJ	ECT NO	^{.:} 6066J-06-01							a*										
SAMP	LED BY	Y: (Signature)	Rodgers			2			ztec		ize								
			0	Lix	ainers	ative clow)	YSIS IOD:	iltere	<u>a</u>		S S								
			Sample ID	Mat	f cont	ee be	ETH	id Fi	alel	No.	<u>ai</u>								
Date	Time	Sample Site Name	(if different)		0 #	Pr (s	ΈĘ	Fie	Ŧ	Ĕ	Ū						REMARKS		LAB ID#
12/3/18	1310	1819-SE68-	SC-5R	S		1		Ν	\checkmark	\checkmark	\checkmark						*chronic freshwater (EP.	A/600/4-91/003)	
12/3/18	1310	1819-SE68-	FD	S		1		N	\checkmark	\checkmark	\checkmark						Hyalella azteca surv	vival & growth	
																	Conduct additiona	l pyrethroids	
																	analysis if toxicity	is observed.	
			•																
		· · · · · · · · · · · · · · · · · · ·															Sub sample	es to be	
																	collected for	Caltest	
													-					Ouncor	
Relinqui	shed By: (Signature)	the A				(TT)										TOC RL=	1 mg/L	
Relinquished By: (Signature)					010		Receiv	ed By: (Signature)	_	-				Date: 1/18	Time 0/0			
Matrix	-5-0	Waste Water				Pail/Pail3				Receiv	eu By: (Signature)	Duas	1411 a 42					
DW Drin	king Water	www.	Hazardous Waste (Wat	ter)	9	2011/2011d	sw	Sto	orm Wate	G	Gro	und Water	er 1 4°C 2 HCL 3 NaOH 1 Na2S2O3 5 HNO3 6 H2SO4 6 Other						
Original – Send								Yel	low-	File			Pink – Log Book					•	

This page intentionally left blank for printing purposes

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

This page intentionally left blank for printing purposes

CETIS Summary Report

29 Dec-18 11:45 (p 1 of 1) CE_1218HA_C1 | 18-2213-5689

Hyalella 10-d Surv	ival and Gr	owth Sedir	nent Test							Pacifi	c EcoRisk	
Batch ID: 13-5	584-7125	Tes	t Type: Su	vival-Growth	n (10 day)		Ana	l yst : Ash	leigh Findle	у		
Start Date: 08 D	Dec-18 14:10	D Pro	tocol: EP.	A/600/R-99/	064 (2000)		Dilu	ent: Not	Applicable			
Ending Date: 18 D	Dec-18 11:1	5 Spe	ecies: Hya	ies: Hyalella azteca Brine: Not Applicable								
Duration: 9d 2	21h	Sou	Irce: Aq	uatic Biosyst	ems, CO		Age	: 11				
Sample Code	Sample II) San	nple Date	Receipt	t Date	Sample Age	e Clie	nt Name	Pr	oject		
CE_1218HA_C1	20-9314-9	866 08 1	Dec-18 14:10	08 Dec-	18 14:10	n/a (22.7 °C	Condor Earth Technologi 29660					
1819-SE68-SC5R	01-6507-2	846 03 [Dec-18 13:10	0 04 Dec-	18 10:10	5d 1h (4 °C)					
1819-SE68-FD	16-4190-9	133 03 [Dec-18 13:10) 04 Dec-	18 10:10	5d 1h (4 °C)					
Sample Code	Material 1	Гуре	Sar	mple Sourc	e	Sta	tion Locati	ion	Lat/Long			
CE_1218HA_C1	Sediment		Coi	ndor Earth T	echnologies	s LAE	BQA					
1819-SE68-SC5R Sediment Condor Earth Technologies 1819-SE68												
1819-SE68-FD	Sediment		Col	ndor Earth T	echnologies	5 						
Single Compariso	n Summary	,										
Analysis ID End	point		Comparis	on Method			P-Value	Comparis	son Result			
21-4715-8645 Mea	n Dry Weigl	ht-mg	Unequal V	ariance t Tv	vo-Sample	Test	0.9388	1819-SE6	8-SC5R pas	ssed mean o	dry weight-	
16-9343-8194 Mea	n Dry Weigl	ht-mg	Equal Var	iance t Two-	Sample Te	st	1.9E-04	1819-SE6	8-FD failed	mean dry w	eight-mg	
13-1072-0389 Surv	vival Rate		Unequal V	ariance t Tv	vo-Sample	Test	6.5E-05	1819-SE6	8-SC5R fail	ed survival r	rate	
16-2277-8941 Surv	vival Rate		Wilcoxon	Rank Sum T	wo-Sample	Test	7.0E-04	1819-SE6	8-FD failed	survival rate	•	
Mean Dry Weight-r	ng Summa	ry										
Sample	e Code Count			95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
CE_1218HA_C1	CS	8	0.0803	0.071	0.0895	0.061	0.095	0.00393	0.0111	13.84%	0.00%	
1819-SE68-SC5R		8	0.105	0.0724	0.138	0.0587	0.175	0.0138	0.0392	37.26%	-30.97%	
1819-SE68-FD		8	0.0423	0.0253	0.0592	0.0267	0.0812	0.00717	0.0203	48.03%	47.35%	
Survival Rate Sum	mary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect	
CE_1218HA_C1	CS	8	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%	
1819-SE68-SC5R		8	0.638	0.504	0.771	0.400	0.900	0.057	0.160	25.07%	36.25%	
1819-SE68-FD		8	0.825	0.751	0.899	0.700	1.000	0.031	0.089	10.74%	17.50%	
Mean Dry Weight-n	ng Detail											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
CE_1218HA_C1	CS	0.095	0.093	0.071	0.079	0.083	0.077	0.083	0.061			
1819-SE68-SC5R		0.0933	0.175	0.132	0.0587	0.124	0.07	0.0714	0.117			
1819-SE68-FD		0.0812	0.0625	0.035	0.0487	0.0267	0.0275	0.0278	0.0286			
Survival Rate Deta	il											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
CE_1218HA_C1	CS	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000			
1819-SE68-SC5R		0.600	0.400	0.600	0.800	0.500	0.900	0.700	0.600			
1819-SE68-FD		0.800	0.800	0.800	0.800	0.900	0.800	1.000	0.700			
Survival Rate Bino	mials											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8			
CE_1218HA_C1	CS	10/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10			
1819-SE68-SC5R		6/10	4/10	6/10	8/10	5/10	9/10	7/10	6/10			
1819-SE68-FD		8/10	8/10	8/10	8/10	9/10	8/10	9/9	7/10			

the QA: Analyst:_

Pacific EcoRisk

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condor Earth
Species:	Hyalella azteca

Test ID#:_____

Project#: 29660

Organism Log #: 11328 Age: 10-11 Juys Organism Supplier: ABS

			TP 4 B -	[atom's]		Watan O	lity Maganner	nents	1
Day	Date		Lest N			Parameter	Webre	Mater ID	Sign-off:
			Lab C	ontrol		Farameter		Meter 1D	AM Change: 02
0		A ()	# Live O	rganisms	מן		7.99	800	WO: np
0	1218118	<u> 10</u>	E 10	G (A	H (1)	D.O. (ing/L)	1.6	7017	Initiation Time:
		- (0	* V			Conductivity (µS/cm)	432	KU15	Initiation Counts:
						Alkalinity (mg/L)	V 101.1		Confirmation Counts
						Hardness (mg/L)	× 155		
						Ammonia (mg/L)	<1.00	DK3800	PM Feed:
						Temp. (°C)	22.1	488	AM Change of WO of
	, ,		# of Mo	ortalities	D c	Old D.O. (mg/L)	8.3	RDII	Mortality Country = 4
1	12/9/18	^ O	° 0	0	0	New D.O. (mg/L)	8.5	RDII	DM Changes
		E O	* O	° 0	n 0	Temp. (°C)	22.7	48A	PM Change: 79 PM Feed: 74
		4	# of M	ortalities	D	Old D.O. (mg/L)	8.4	RDI3	AM Change: TD WQ JD
2	12/10/18	^ ()	в	c ()	D U	New D.O. (mg/L)	8.5	ROIZ	Mortality Counts: 'ID
		e D	F (G B	н ()	Temp. (°C)	23.1	43A	PM Change: JD PM Feed: JD
			# of M	ortalities		Old D.O. (mg/L)	8.4	RDIO	AM Change: AR WQ: AR
3	12/11/18	A O	^B O	° O	Da	New D.O. (mg/L)	9.2	RDIO	Mortality Counts: AR
		e O	F O	G O	нО	Temp. (°C)	23.0	48A	PM Change: AR PM Feed: AR
			# of M	ortalities		Old D.O. (mg/L)	8,6	RD13	AM Change: WQ:
4	12112118	A ()	вО	° O	D Ø	New D.O. (mg/L)	8.2	P013	Mortality Counts: OAT
		e O	FO	GO	н О	Temp. (°C)	23.2	48A	PM Change: LE PM Feed: 12
			# of M	ortalities		Old D.O. (mg/L)	8.7	RDI	AM Change: SAT WQ: SAT
5	12/13/18	A 0	BO	c o	20	New D.O. (mg/L)	7.7	RDN	Mortality Counts:
		e ()	FO	G O	ню	Temp. (°C)	231	48A	PM Change A PM Feed: AT
			# of M	ortalities		Old D.O. (mg/L)	8.1	RD12	AM Change: AR WQ: AR
6	12/14/18	A O	ВО	° O	DO	New D.O. (mg/L)	9.0	RD12	Mortality Counts: AR
		E ()	FO	G O	н О	Temp. (°C)	23.	48A	PM Change: AR PM Feed: AR
[# of M	ortalities		Old D.O. (mg/L)	6.0	ROII	AM Change: TP WQ: TP
7	12/15/18	^A 0	в	° O	DO	New D.O. (mg/L)	7.1	RDH	Mortality Counts: TP
	10/10/10	^E <i>O</i>	F O	G Ø	н О	Temp. (°C)	23.2	98A	PM Change: TP PM Feed FP
			# of M	ortalities		Old D.O. (mg/L)	6.1	RUIZ	AM Change: M WQ: OM
8	DILL	A ()	вО	° O	D O	New D.O. (mg/L)	6.4	ROIZ	Mortality Counts: UM
	811017	E ()	FO	GO	н	Temp. (°C)	23.2	48A	PM Change PM Feed:
			# of M	ortalities		Old D.O. (mg/L)	1.7	RU12	AM Change: 6M WQ: 0M
9	Dirin	A ()	B	c ()	D O	New D.O. (mg/L)	7.9	RUIZ	Mortality Counts: DM
	11/18	EO	FO	GD	H ()	Temp. (°C)	23.3	48A	PM Change: M PM Feed M
1	11		# A	live		pH	7.94	PH25	WQ: 74
10	12/18/18	A IO	B 10	c 10	D 10	D.O. (mg/L)	7.6	ROLL	Termination Counts: KL
		e io	F 10	G 10	H 10	Conductivity (µS/cm)	467	ECII	Termination Time: 1115
						Alkalinity (mg/L)	42.4		
						Hardness (mg/L)	134		
						Ammonia (mg/L)	41.00	DR-3800	
						Temp. (°C)	23.0	48A	

CETIS Analyti	cal Repo	ort					Repo	ort Date:	29 CE 121/	Dec-18 11:4	45 (p 3 of 4)
Hyalella 10-d Surv	ival and Gr	owth Sedin	nent Test				1051	0000.	00_121	Pacif	ic EcoRisk
Analysis ID: 13-	1072-0389	End	point: Sur	vival Rate			CETI	S Version:	CETISv	1.9.2	
Analyzed: 29	Dec-18 11:4	44 Ana	l ysis: Par	ametric-Two	o Sample		Offic	ial Results:	Yes		
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Angular (Corrected)		C > T					1819-SE6	8-SC5R faile	ed survival	rate	7.56%
Unequal Variance	t Two-Sam	ple Test									
Sample vs	Sample II		Test Stat	Critical	MSD DF	Р-Туре	P-Value	Decision(α:5%)		
Control Sed	1819-SE6	8-SC5R*	7.56	1.89	0.12 7	CDF	6.5E-05	Significant	Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.91223		0.91223		1	57.1	2.6E-06	Significant	Effect		
Total	1.13584		0.0159723	>	14						
Distributional Test											
Attribute	S				Toot Stat	Critical	D Value	Decision(au 4 07 1		
Variances	Variance I	Ratio E Test			1 26F+14	8 89	<1 0E-37	Unequal V	ariances		
Distribution	Shapiro-W	Vilk W Norm	ality Test		0.843	0.841	0.0107	Normal Di	stribution		
Survival Rate Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1218HA_C1	CS	8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
1819-SE68-SC5R		8	0.638	0.504	0.771	0.600	0.400	0.900	0.057	25.07%	36.25%
Angular (Corrected	I) Transfor	med Summ	ary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
CE_1218HA_C1	CS	8	1.41	1.41	1.41	1.41	1.41	1.41	0	0.00%	0.00%
1019-3E00-3C5K		0	0.934	0.785	1.08	0.885	0.085	1.25	0.0632	19.13%	33.82%
Graphics											
1.0	•					0.35					
0.9	1000-0-			Reject Null		0.30					
0.8						0.25		1			~
0.7					_	0.20					
0.6			11191	111	anterec	5 0.15 5 0.10					
Rate 					ŏ	0.05			1		
lervival s						0.00					
67 0.4						-0.05	• •	•			
0.3						-0.10					
0.2						-0.15					
0.1						-0.20					
0,0	CE_1218HA_C1		1819-SE68-S	CSR.		-0.25	-1.5 -1.0	-0.5 0.0	0.5 1	.0 1.5	2.0
								Rankits			

coRisk							Environr	nental Consulting and Testing	
	10-Day Hyalella azteca Sediment Toxicity Test Data								
Condo	Earth	Project#:	29660		Organism Log #:	1/32	8	Age: 10-11 Jays	
Hyalella	azteca	Test ID#:	80966	_	Organism Supplier: ABS				
Date		Test N	Aaterial		Water Qua	ality Measuren	nents	Sign-off:	
Dutt		<u>SC-5</u>	R		Parameter	Value	Meter ID		
		# Live C	Organisms		pH	7.74	PH25	AM Change: AR	
1218/10	A (()	B (U	c /0	DO	D.O. (mg/L)	7.5	RDII	^{WQ:} AR	
1010	EIU	F 10	G (U	HO	Conductivity (µS/cm)	446	ECII	Initiation Time:/410	
					Alkalinity (mg/L)	1 54.8		Initiation Counts: TF	
					Hardness (mg/L)	1/26		Confirmation Counts:	
					Ammonia (mg/L)	<1.00	DR3800	PM Feed: TT	
					Temp. (°C)	22.5	48A		
		# of M	ortalities		Old D.O. (mg/L)	8.3	RDII	AM Change: H WQ: H	
12/9/18	A D	вО	° O	DO	New D.O. (mg/L)	8.6	RDII	Mortality Counts:	
. / .//0	e O	FO	G O	н О	Temp. (°C)	22.9	48A	PM Change: Hy PM Feed: Ky	
		# of M	ortalities		Old D.O. (mg/L)	8.3	RDIS	AM Change: WQ ID	
12/10/18	^ ()	вО	с О	D ()	New D.O. (mg/L)	8.4	ROIS	Mortality Counts:	
	E ()	F O	G 💧	н б	Temp. (°C)	23.0	48 A	PM Change: ID PM Feed: ID	
		# of M	ortalities		Old D.O. (mg/L)	8.8	RD 10	AM Change: AR WQ: AR	
12/11/18	A O	вО	° O	D O	New D.O. (mg/L)	9.2	RDIO	Mortality Counts: AR	
	^E O	FO	G O	H O	Temp. (°C)	22.8	48A	PM Change: AR PM Feed: AR	
		# of M	ortalities		Old D.O. (mg/L)	9,2	RDB	AM Changes At WQ: SAT	
12/ Ad	A O	вО	c O	D O	New D.O. (mg/L)	8.4	FD13	Mortality Counts: Osor SAT	
	εÔ	FO	GO	нΟ	Temp. (°C)	23.0	48A	PM Change: VF PM Feed:	
		# of M	ortalities		Old D.O. (mg/L)	18.7	RDII	AM Change SAT WQ: SAT	
12/13/18	A O	^B O	c O	D O	New D.O. (mg/L)	7.9	RDI	Mortality Counts:	
	E Ø	FO	G	н Ю	Temp. (°C)	23-2	48A	PM Change: AT PM Feed: 347	
		# of M	ortalities		Old D.O. (mg/L)	8.4	RD 12	AM Change: AR WQ: AR	

Client: Species:

Day

0

1

2

3

4

5

6

7

8

9

10

12/14/18

12/15/18

12/16/18

12/17/18

12/18/18

0

0

0

0

Ö

0

6

0

65

0

0

0-

0

Ô

0

0

б

4

C

Mortality Counts: AR

PM Change: AR PM Feed: AR

PM Change: TP PM Feed: TP

WQ ()M

PM Feed

WQUM

AM Change: TP WQ: TP

Mortality Counts: TP

Mortality Counts: 0 M

Mortality Counts: DM

PM Change: M PM Feed: M

Termination Counts: 1330

Termination Time: KL

AM Change

PM Changewy

AM Change:

WQ: 74

8.7

23.0

6.8

7.5

23.2

5,4

5,9

23.2

7

3

8,0

23.

7,98

8.0

477

40

143 61.00

23.1

New D.O. (mg/L)

Temp. (°C)

Old D.O. (mg/L)

New D.O. (mg/L)

Temp. (°C)

Old D.O. (mg/L)

New D.O. (mg/L)

Temp. (°C)

Old D.O. (mg/L)

New D.O. (mg/L)

Temp. (°C)

pН

D.O. (mg/L)

Conductivity (µS/cm)

Alkalinity (mg/L) Hardness (mg/L)

Ammonia (mg/L)

Temp. (°C)

RD12

48A

RDI

RDN

48A

RU12

RO12

ROIZ

RDIZ

48A

PH25

RDII

Ecll

DK3800

48A

484

D σ

н

н

D

Н

D

н

0

0

O

0

0

0

8

6

Ø

0

0

0

0

0

0

0

0

6

7

G

of Mortalities

of Mortalities

of Mortalities

G

Alive

G

CETIS Analyti	TIS Analytical Report								29 CE_1218	Dec-18 11: 8HA_C1 1	45 (p 4 of 4) 8-2213-5689
Hyalella 10-d Surv	ival and G	rowth Sedin	nent Test							Paci	fic EcoRisk
Analysis ID: 16- Analyzed: 29	2277-8941 Dec-18 11:	End 44 Ana	l point : Sui I ysis: N oi	vival Rate	-Two Samp	le	CET	IS Version: al Results:	CETISv Yes	1.9.2	
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected)	C > T					1819-SE6	8-FD failed :	survival rat	e	5.48%
Wilcoxon Rank Su	ım Two-Sa	mple Test									
Sample I vs	Sample I	1	Test Stat	Critical	Ties D	F P-Type	P-Value	Decision(α:5%)		
Control Sed	1819-SE6	68-FD*	40	n/a	1 1	4 Exact	7.0E-04	Significant	Effect		
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(a:5%)		
Between	0.280062		0.280062		1	36.2	3.2E-05	Significant	Effect		
Error	0.108354		0.0077396	5	14						
	0.388416				15						
Distributional Test	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)	_	
Variances	Variance	Ratio F Test	eliku Telek		6.1E+13	8.89	<1.0E-37	Unequal V	ariances	•	
Distribution	Shapiro-v				0.739	0.041	4.72-04	Non-Norm		ion	
Survival Rate Surr	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1218HA_C1	CS	8	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
1019-3E00-FD		°	0.825	0.751	0.899	0.800	0.700	1.000	0.031	10.74%	17.50%
Angular (Corrected	d) Transfor	med Summ	ary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
CE_1218HA_C1	CS	8	1.41	1.41	1.41	1.41	1.41	1.41	0	0.00%	0.00%
1819-SE68-FD		8	1.15	1.04	1.25	1.11	0.991	1.4	0.044	10.84%	18.74%
Graphics											
1.0	•					0.30					
0.9	•					0.25				•	
			1119			0.20					
0.0											
0.7						Angle					
0.6						6.10 0				-	
100 0.5						0.05					
0.4						0.00	A. A		0-0-0-0-0	•	
0.3						-0.05	•••				
0.2						-0.10					
0.1						-0.15					
						-0.20	4	50 L			
u.U.	CE_1218HA_C1		1819-SE68	FD		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.	0 1.5	2.0
	_										

Analyst: Aref QA:

Data	Test Material				Water Qua	ality Measure	nents	Sign_off:
Date		SC-5R	-FD		Parameter	Value	Meter ID	5igii-011.
		# Live O	rganisms		pН	7.70	PH25	AM Change: AR
1210110	A IÛ	B /()	C 10	90	D.O. (mg/L)	7.7	ROII	^{wQ:} AR
1210118	E (0	FCO	GU	н (О	Conductivity (µS/cm)	450	ECII	Initiation Time: 1410
					Alkalinity (mg/L)	158.4		Initiation Counts: 7F
					Hardness (mg/L)	V 1210		Confirmation Counts:
					Ammonia (mg/L)	<1.00	DR3800	PM Feed: TF
					Temp. (°C)	22.6	48A	
		# of Mo	ortalities		Old D.O. (mg/L)	8.3	RUII	AM Change: 7 WQ:74
12/9/18	^ ()	вО	c O	D ()	New D.O. (mg/L)	8.6	RDII	Mortality Counts: 74
, .	E O I	F ()	G ()	н О	Temp. (°C)	22.9	48A	PM Change: K PM Feed: K
		# of Mo	ortalities	la	Old D.O. (mg/L)	7,8	RD13	AM Change: WQ:
12/10/18	^ () I	в	с ()	DÔ	New D.O. (mg/L)	8-2	RD13	Mortality Counts: ID
	E ()	F ()	G ()	н О	Temp. (°C)	Z2.6	48A	PM Change: PM Feed
		# of Mo	ortalities		Old D.O. (mg/L)	8.5	RDIO	AM Change: AR WQ: AR
12/11/18	A O	BO	° O	D O	New D.O. (mg/L)	9.0	RDIO	Mortality Counts: AR
1201 111 0	E O I	FO	G O	Р Н	Temp. (°C)	22.9	48A	PM Change: AR PM Feed: AR
		# of Mo	ortalities		Old D.O. (mg/L)	8,6	R013	AM Change: A + WQ: SAF
12112118	A 6 I		° 6	° ⊘	New D.O. (mg/L)	8.3	RD13	Mortality Counts:
	e () i	FO	G ()	нÒ	Temp. (°C)	23.2	48A	PM Change: No PM Feed: D
		# of Mo	ortalities		Old D.O. (mg/L)	8.7	RDI	AM Change WQ:
2113118	A O I	вÖ	° Ø	D O	New D.O. (mg/L)	8-1	ROII	Mortality Counts: SAT
	E O I	FØ	⁶ ⁄0	H O	Temp. (°C)	23.1	48A	PM Changes PH Feed SAT
		# of Mo	ortalities		Old D.O. (mg/L)	8.5	RD12	AM Change: AR WQ: AR
12/14/18	^A O	BO	^c O	DO	New D.O. (mg/L)	8.4	RDI2	Mortality Counts: AR
	^E O	f 0	^G O	н О	Temp. (°C)	23.2	48A	PM Change: AR PM Feed: AR
		# of Mo	ortalities		Old D.O. (mg/L)	7.4	RDII	AM Change: TP WQ: TP
12/16/14	^ O	B _ O	° O	D Ø	New D.O. (mg/L)	7.5	RDII	Mortality Counts: TP
01/01/0	E O I	F Ø	G Ø	н О	Temp. (°C)	23.3	HSA	PM Change: TP PM Feed: TP
		# of Mo	ortalities		Old D.O. (mg/L)	4,6	ROIZ	AM Change: DM WQ: UM
12/16/18	A O I	^B O	° (0	D O	New D.O. (mg/L)	6.5	RDIZ	Mortality Counts: DM
.0	E Ó	F Ó	G Ø	н О	Temp. (°C)	23,3	48A	PM Change: PM Feed:
1 - 1		# of Mo	ortalities		Old D.O. (mg/L)	76	ROIZ	AM Change M WQ: UM
12/17/18	^	вÓ	° ()	° ∪	New D.O. (mg/L)	8,0	RDIZ	Mortality Counts:
	EØ	F O	G O	н О	Temp. (°C)	23.3	48A	PM Change: DMPM Feed: M
11		# A	live		pH	7.88	PH25	WQ: Kg
12/18/18	^ <u>8</u>	в 8	° 8	° 8	D.O. (mg/L)	7.8	RDII	Termination Counts: TL
	E ()	F y	4 HOIF	7	Conductivity (µS/cm)	471	ECIL	Termination Time: 1200
					Alkalinity (mg/L) v	183		
					Hardness (mg/L) 🧹	144		

10-Day Hyalella azteca Sediment Toxicity Test Data

29660

80967

Project#:

Test ID#:

Organism Log #: _____328_____

Organism Supplier:

Client:

Species:

Day

0

1

2

3

4

5

6

7

8

9

10

Condor Earth

Hyalella azteca

ABS

Age: 10-11 days

Hardness (mg/L) Ammonia (mg/L)

Temp. (°C)

21.00

23.0

DR3800

48A

CETIS Analyti	cal Rep	ort					Rep	ort Date:	29	Dec-18 11:4	45 (p 1 of 4)
-							Test	Code:	CE_1218	BHA_C1 1	8-2213-5689
Hyalella 10-d Surv	rival and G	rowth Sedin	nent Test							Pacit	ic EcoRisk
Analysis ID: 21-	4715-8645	End	point: Me	an Dry Weig	jht-mg		CET	S Version:	CETISv	1.9.2	
Analyzed: 29	Dec-18 11:	45 Ana	lysis: Par	ametric-Two	o Sample		Offic	cial Results	: Yes		
Data Transform		Alt Hyp					Comparie	son Result			PMSD
Untransformed		C > T					1819-SE6	88-SC5R pas	ssed mean	dry weight-	m 33.35%
Unequal Variance	t Two-Sam	ple Test									
Sample I vs	Sample I	I	Test Stat	Critical	MSD D	F P-Type	P-Value	Decision	α:5%)		
Control Sed	1819-SE6	68-SC5R	-1.73	1.86	0.027 8	CDF	0.9388	Non-Signi	ficant Effec	t	
ANOVA Table											
Source	Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(α:5%)		
Between	0.002471	2	0.0024712	2	1	2.98	0.1061	Non-Signi	ficant Effec	t	
Error	0.011598	8	0.0008285	i	14			-			
Total	0.01407				15						
Distributional Test	s										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Variance	Ratio F Test			12.4	8.89	0.0036	Unequal V	/ariances		
Distribution	Shapiro-V	Vilk W Norm	ality Test		0.95	0.841	0.4932	Normal Di	stribution		
Mean Dry Weight-	mg Summa	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	. Median	Min	Max	Std Err	CV%	%Effect
CE_1218HA_C1	CS	8	0.0803	0.071	0.0895	0.081	0.061	0.095	0.00393	13.84%	0.00%
1819-SE68-SC5R		8	0.105	0.0724	0.138	0.105	0.0587	0.175	0.0138	37.26%	-30.97%
Graphics											
0.18						0.07				•	
0.16						0.06					
0.14						0.05					
0.12 —						0.03		14		<u> </u>	
Bu						5 0.02		3			
5 0.10 P						5 0.01					
۵.08 –	• • •	-				0.00					
E 0.05						-0.01					
		St - 2 S		Reject Null		-0.02	9	1			
0.04						-0.03	1				
0.02						-0.04	1				
						-0.05	6				
0.00	CE_1218HA_C1		1819-SE68-5	ic5R		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.	0 1.5	2.0

j,

Analyst:

Client:	Condor Ea	ırth	Project #:	29660	Balance ID:
Sample ID:	SC-5R		Tare Wt Date:	12/10/18	Sign-Off:
Test ID #:	80966		Final Wt Date:	12/19/18	Sign-Off: ID
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight
1 cm1	Replicate	(mg)	(mg)	" organisms	(mg)
1	Control A	62.25	63.20	10	0.0950
2	Sediment B	62.56	63.49	10	0.0930
3	C	65.00	65-71	10	0.0710
4	D	58.50	59.29	10	0.0790
5	E	68.38	69.21	10	0.0830
6	F	76.48	77.25	10	0.0770
7	G	66.02	66.85	10	0.0830
8	Н	65.51	66.12	10	0.0610
9	SC-5R A	60.90	61.46	6	0.0933
10	В	63.00	63.70	4	0.1750
11	С	65.05	65.84	6	0.1317
12	D	61.40	61.87	8	0.0587
13	E	59.36	59.98	5	0.1240
14	F	60.82	61.45	9	0.0700
15	G	69.05	69.55	7	0.0714
16	Н	71.33	72.03	6	0.1127
QA		58.51	58.53		

Hyalella azteca Weight Data Sheets

C17 0/18

÷.,

CETIS Ana	lytical Re	port					Test	ort Date: Code:	29 CE 1218	Dec-18 11:4 3HA C1 1.	45 (p 2 of 4) 8-2213-5689
Hyalella 10-d	Survival and	Growth Sed	iment Test							Paci	fic EcoRisk
Analysis ID: Analyzed:	16-9343-819 29 Dec-18 1)4 En 1:45 An	dpoint: Me alysis: Pa	ean Dry Weig arametric-Two	pht-mg o Sample		CET	IS Version	: CETISv ² s: Yes	1.9.2	
Data Transfor	m	Alt Hyp					Comparis	son Result			PMSD
Untransformed	ł	C > T					1819-SE6	8-FD failed	mean dry w	/eight-mg	17.95%
Equal Varianc	e t Two-Sam	ple Test									
Sample I	vs Sample	e II	Test Stat	Critical	MSD DI	P-Type	P-Value	Decision	(α:5%)		
Control Sed	1819-S	E68-FD*	4.65	1.76	0.014 14	CDF	1.9E-04	Significar	nt Effect		
ANOVA Table											
Source	Sum S	quares	Mean So	uare	DF	F Stat	P-Value	Decision	(a:5%)		
Between	0.0057	755	0.005775	5	1	21.6	3.8E-04	Significar	nt Effect		
Error	0.00374	463	0.000267	6	14						
Total	0.00952	218			15						
Distributional	Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Varianc	e Ratio F Tes	st		3.34	8.89	0.1343	Equal Va	riances	_	21.2.2.2.2
Distribution	Shapiro	-Wilk W Norr	nality Test		0.92	0.841	0.1702	Normal D	istribution		
Mean Dry Wei	ght-mg Sum	nary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1218HA_C	C1 CS	8	0.0803	0.071	0.0895	0.081	0.061	0.095	0.00393	13.84%	0.00%
1819-SE68-FD		8	0.0423	0.0253	0.0592	0.0318	0.0267	0.0812	0.00717	48.03%	47.35%
Graphics											
0.100						0.040					
0.400						0.075					
						0.035					
0.075	1 1 1 1 1 1	1.1				0.035					
0.075					-	P				1	
6			7.5 * 7 5 3	Reject Nuli	antere	Logsue Dote				1	
eight-					Ũ	5				0	
M 0.050						0.005					
Mean			111	111.		0.000					
			////	111		-0.005		•	Þ.		
0.025						-0.010		~ ••			
						-0.015					
						-0.020					
0.000	CE_1218HA_C	1	1819-SE	58-FD		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.	0 1.5	2.0

Analyst: APF QA:

.....

. .

4

Client:	Condor Ea	rth	Project #:	29660	Balance ID: <u>BAL04</u>
Sample ID:	SC-5R-FI)	Tare Wt Date:	1410/18	Sign-Off:
Test ID #:	80967		Final Wt Date:	12/14/18	Sign-Off: <u>ID</u>
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight
	Replicate	(mg)	(mg)		(mg)
1	Control A	62.25	63.20	10	0.0950
2	Sediment B	62.56	63.49	10	0.0930
3	C	65,00	65.71	10	0.0710
4	D	58.50	59.29	10	2/21/18 0.0830 0.0790
5	E	68:38	69.21	10	1.0830 1.0830
6	F	76.48	77.25	10	215-1120.08300.0770
7	G	66.02	66.85	10	0.0830
8	Н	65.51	66.12	10	0.0610
17	SC-5R-FD A	66.48	67.13	8	0.0812
18	В	60.12	60.62	8	0.0625
19	C	61.45	61.73	8	0.0350
20	D	68.12	68.51	8	0.0488
21	E	73.07	73.31	9	0.0267
22	F	63.13	63.35	8	0.0275
23	G	64.95	65.20	69 THEAR	0.0218
24	Н	60.39	60.59	7	0.0286
QA3-		58.51	58.53		

Hyalella azteca Weight Data Sheets

JR 12/10/18

art, 19

Hyalella azteca Weight Data Sheets

Client:	Condor Earth	Test Init Date:	1218/18	Balance ID:	BAL-04
Sample ID:	ТО	Tare Wt Date:	12/8/18	Sign-Off:	AR
Test ID:	80966-80967	Final Wt Date:	12/11/18	Sign-Off:	HR.
Project #:	29660				

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# Organisms	Ave Weight (mg)
1	TO A	69.77	70.22	10	0.045
2	В	58.57	58.83	10	0.026
3	С	62.63	63.03	10	0.040
4	D	61.40	61.84	10	0.044
5	E	63.66	64.02	10	0.036
6	F	58.46	58.68	10	0.022
7	G	61.39	61.81	10	0.042
8	Н	65.98	66.53	10	0.055
QA		55.96	55,94		

This page intentionally left blank for printing purposes

Sediment Toxicity Lab Report June 20, 2019 at SC-5R Dry Weather Event This page intentionally left blank for printing purposes

July 10, 2019

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Dear Micheline:

I have enclosed a copy of our report "An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples" for the samples that were collected June 19, 2019. The results of this testing are summarized below:

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.			
Sample Station	Toxicity Present Relative to Lab Control?		
	Survival	Growth	
SC-5R	YES	no	
FD	YES	no	

If you have any questions regarding the performance and interpretation of this testing, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 30078.

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected June 19, 2019

Prepared For:

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By:

Pacific EcoRisk 2250 Cordelia Road Fairfield, CA 94534 (707) 207-7760

July 2019

An Evaluation of the Toxicity of City of Stockton Stormwater Program Sediment Samples

Samples collected June 19, 2019

Table of Contents

Appendices

- Appendix A Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples
- Appendix B Test Data and Summary of Statistics for the Evaluation of the Toxicity of Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

i

1. INTRODUCTION

In compliance with the City of Stockton Stormwater Program NPDES permit monitoring requirements, Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to perform evaluations of the toxicity of selected ambient water and sediment samples. The current testing event was designed to meet the sediment monitoring requirements using sediment samples that were collected on June 19, 2019. This evaluation consisted of performing the US EPA 10-day survival and growth test with the amphipod *Hyalella azteca*. This report describes the performance and results of this testing.

2. SEDIMENT TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Methods for Measuring the Toxicity and Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates, Second Edition" (EPA/600/R-99/064).

2.1 Receipt and Handling of the Sediment Samples

On June 19, sediment samples were collected into appropriately cleaned sample containers. These samples were transported on ice and under chain-of-custody, to the PER laboratory in Fairfield, CA (Table 1). The samples were then stored at $\leq 6^{\circ}$ C until being used to initiate toxicity tests within 14 days of collection. The chain-of-custody record for the collection and delivery of the samples is presented in Appendix A.

Table 1. Sampling station and date of sediment collection for the Stockton Stormwater Program.			
Sample Station	Date Collected	Date Received	
SC-5R	6/19/19	6/20/19	
FD	6/19/19	6/20/19	

2.2 Solid-Phase Sediment Toxicity Testing with Hyalella azteca

The freshwater sediment toxicity test with *H. azteca* consists of exposing the amphipods to the sediment for 10 days, after which effects on survival are evaluated. The specific procedures used in these tests are described below.

The *H. azteca* used in these tests were obtained from a commercial supplier (Aquatic BioSystems, Fort Collins, CO). Upon receipt at the lab, the test organisms were held in tanks of SAM-5S at 23°C, modified for use with *H. azteca* as per the EPA test guidelines, and were fed YCT and *Selenastrum* food.

Each sediment sample was tested at the 100% concentration only. The Lab Control treatment sediment consisted of a reference site sediment collected from Spring River, MO, which is also used by the USGS laboratory in Columbia, MO. There were 8 replicates for each test treatment.

Each replicate container consisted of a 300-mL tall-form glass beaker with a 3-cm ribbon of 540µm mesh NITEX attached to the top of the beaker with silicone sealant. Each of the sediment samples was re-homogenized immediately prior to introduction of the sediments into the test replicates. Approximately 100 mL of the homogenized sediment was loaded into each test replicate container. Each of the test replicates was then carefully filled with clean overlying water (SAM-5S). The replicates with sediments and clean overlying water were established approximately 24 hours prior to the introduction of the amphipods.

After this initial 24 hour period, the overlying water in each replicate was flushed with one volume (approximately 150 mL) of fresh overlying water. A small aliquot of the renewed overlying water in each of the 8 replicates per treatment was then collected and composited for measurement of "initial" water quality characteristics (pH, D.O., conductivity, alkalinity, hardness, and total ammonia). The tests were initiated with the random allocation of ten 10-11 day old amphipods into each replicate, followed by the addition of 1.0 mL of *Spirulina*-amended YCT food. The test replicates were then returned to the room.

Each day, for the following 9 days, each test replicate was examined for the presence of any dead amphipods. A small aliquot of the overlying water in each of the 8 replicates (per treatment) was then collected and composited as before for measurement of "old" D.O., after which each replicate was flushed with one volume of fresh water. Another small aliquot of the overlying water in each of the 8 replicates was then collected and composited as before for measurement of "new" D.O., after which each replicate was fed 1.0 mL of *Spirulina*-amended YCT.

After 10 days exposure, an aliquot of overlying water was collected from each replicate and composited for analysis of the "final" water quality characteristics. The sediments in each replicate were then carefully sorted and sieved, and the number of surviving amphipods determined. The resulting survival data were analyzed to evaluate any impairment due to the ambient sediments. Statistical analyses were performed using CETIS[®] (TidePool Scientific Software, McKinleyville, CA).

3. RESULTS

Test results are summarized in Table 2. There were significant reductions in survival in the SC-5R and field duplicate (FD) sediment samples; there were no significant reductions in growth in either sample. The test data and summary of statistical analyses for this testing are presented in Appendix B.

Table 2. Data summary for the Stockton Stormwater Program sediment samples.												
Test Treatment% Survival% ReductionToxic? (Y/N)Mean dry weight (mg)% ReductionToxic? (Y/N)												
Control	97.5	N/A	N/A	0.055	N/A	N/A						
SC-5R	27.5*	71.8%	Y	0.122	-124%	Ν						
FD 26.2 * 73.1% Y 0.208 -282% N												

* The response at this test treatment was significantly less than the Control sediment response (at p<0.05).

4. SUMMARY AND CONCLUSIONS

The results of this testing are summarized below. There were significant reductions in survival in the SC-5R and field duplicate (FD) sediment samples; there were no significant reductions in growth in either sample.

Summary of Stockton Stormwater Program sediment effects on Hyalella azteca.										
Sample Station Toxicity Present Relative to Lab Control?										
Sumple Station	Survival	Growth								
SC-5R	YES	no								
FD YES no										

4.1 QA/QC Summary

Test Conditions –All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All analyses were performed according to laboratory Standard Operating Procedures.

Negative Control – The biological responses for the test organisms at the Lab Control treatment were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Stockton Stormwater Program Sediment Samples

Samp	le Result	ts TAT: 🔤 Rush 🖌	Standard			1111	Q		PC So	C Box 3905	O11 /21663 Bria	do n Lane	r Ea	vest Circle, Si	T(^{uite I}	echnologie	S, In	IC.	
<u>SHIP</u>	PED TC	<u>):</u>				CC	OND	OR	200 200	9.532.0361 9.532.0773	fax	L	209.234.05 209.234.05	18 18 fax	I	916.783.2464 fax	209.388.9601 209.388.1778 fax	8	
Pacif	ic EcoF	Risk								SEND	RESU	LTS T	<u>0:</u>	halina I	- اربور	1/: 4			
2250	Corde	lia Road									NA	Æ:	mki	neine i nf@cor	Joyle				
Fairfi	eld CA	94534 (707) 207-	-7760								E-M	AIL:		0.000					
															AATT 1				
PROJ	ECTNA	ME/LOCATION: CO	OS Urban Disch	narg	e	EDF RE	ESULT	'S RE	QUIRI	ED 🕢	ÆS 🗖	NO	FLEASE	SI1	TE GLO	DBAL ID: CEDEN Forma	t Request	ed	
PROJ	ECTNO)6066J-06-01							0 *					- I.					
SAMF	LED B	Y: (Signature) Pebeo	a tox/mut Robe	405				_	ztec		Ξ <u>Ω</u>								
Date	Time	Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANALYSIS /METHOD:	Field Filtered	Hyalella az	TOC	Grain S					REMARKS	LAB I	D#	
6/19/19	0920	1819-DW38-	SC-5R	S		1		N	\checkmark	\checkmark	\checkmark				*chronic freshwater (EPA/600/4-81/003)				
6/19/19	1000	1819-DW38-	FD	w		1		N	1	1	\checkmark					Hyalella azteca survival & grow	wth		
														_		Sub samples to CalTest	to		
																Conduct additional pyrethroi	ds		
																analyses if toxicity is observ	ed		
																(per program requiremen	ts)		
																TOC RL = 1 mg/	Ľ		
Dolingui	ahad Dru (Circuit and												1					
Relinavi	shed By: (Signature)	/	Date	-2	0-19	Time	230)	Receiv	red By: (Signature)	2	fip	94	Date:	20/19 Time	1230	
Matrix	union Dy. (Waste Water				0-3/0-111				Receiv	ed By: (S	signature)	Parceau	A C	215	antething 6120	219/	405	
DW Drit	nking Water	r IIWW	Hazardous Waste (Wa	ter)	9	Sou/Solid	sw	Sto	orm Wate	r	Grou	nd Water	Preservit	HCL	3 N	aOH 4 Na2S2O3 5 HNO3	H2SO4 7	Other	
			Original – Send					Yel	llow –	File						Pink – Log Book			

Appendix **B**

Test Data and Summary of Statistics for the Evaluation of the Toxicity of the Stockton Stormwater Program Sediment Samples to *Hyalella azteca*

CETIS Summary Report

Hyalella 10-d Surv	Iyalella 10-d Survival and Growth Sediment Test Pacific EcoRisk										
Batch ID: 18-4	854-2688	Te	st Type: Su	rvival-Growt	h (10 day)		Ana	yst: Rob	ert Gee		
Start Date: 22 J	un-19 11:27	7 Pro	otocol: EP	A/600/R-99/	064 (2000)		Dilu	ent: Not	Applicable		
Ending Date: 02 J	ul-19 10:54	Sp	ecies: Hy	alella azteca			Brin	e: Not	Applicable		
Test Length: 9d 2	23h	Ta	kon: Ma	lacostraca			Sou	rce: Aqu	atic Biosyst	ems, CO	Age: 11
Sample Code	Sample I	D Sa	mple Date	Receip	t Date	Sample Ag	e Clie	nt Name	Pi	oject	
CE_0619HA_C1	05-7061-5	5771 22	Jun-19 11:27	7 22 Jun-	19 11:27	n/a (22.2 °C) Con	dor Earth Te	chnologi 30	078	
1819-DW38-SC5R	02-3465-2	2438 19	Jun-19 09:20) 20 Jun-	19 14:05	74h (1.7 °C))				
1819-DW38-FD	12-9591-0	121 19	Jun-19 10:00) 20 Jun-	19 14:05	73h (1.7 °C))				
Sample Code	Material	Гуре	Sa	mple Sourc	e	Sta	tion Locati	on	Lat/Long		
CE_0619HA_C1	Sediment		Co	ndor Earth T	echnologie	s LAE	BQA				
1819-DW38-SC5R	Sediment		Co	ndor Earth I	echnologie	s 181	9-DW38				
1819-DW38-FD	Sediment		Co	ndor Earth	echnologie	5					
Single Comparison	n Summary	1									
Analysis ID End	point		Comparis	on Method			P-Value	Comparis	on Result		S
06-5279-2923 Mea	n Dry Weig	ht-mg	Unequal \	ariance t Tv	vo-Sample	Test	0.9557	1819-DW	38-SC5R pa	ssed mean	dry weig 1
11-9901-3606 Mea	n Dry Weig	ht-mg	Unequal \	ariance t Tv	vo-Sample	Test	0.9994	1819-DW	38-FD passe	ed mean dry	weight- 1
03-7524-8055 Surv	ival Rate		Wilcoxon	Rank Sum T	wo-Sample	Test	7.8E-05	1819-DW	38-SC5R fai	led survival	rate 1
03-7954-3934 Surv		Equal Var	iance t Two-	Sample Te	st	<1.0E-37	1819-DW	38-FD failed	survival rate	e 1	
Mean Dry Weight-r	ng Summa	ry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0619HA_C1	CS	8	0.0545	0.0457	0.0633	0.041	0.0763	0.00371	0.0105	19.27%	0.00%
1819-DW38-SC5R		8	0.122	0.0418	0.202	0.0325	0.295	0.0339	0.0959	78.66%	-123.69%
1819-DW38-FD		8	0.208	0.139	0.277	0.11	0.365	0.0293	0.0829	39.79%	-281.85%
Survival Rate Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0619HA_C1	CS	8	0.975	0.916	1.000	0.800	1.000	0.025	0.071	7.25%	0.00%
1819-DW38-SC5R		8	0.275	0.188	0.362	0.100	0.400	0.037	0.104	37.64%	71.79%
1819-DW38-FD		8	0.262	0.186	0.339	0.200	0.400	0.032	0.092	34.90%	73.08%
Mean Dry Weight-r	ng Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0619HA_C1	CS	0.0763	0.056	0.041	0.051	0.051	0.052	0.061	0.048		
1819-DW38-SC5R		0.05	0.0325	0.295	0.19	0.0467	0.193	0.123	0.045		
1819-DW38-FD		0.11	0.122	0.365	0.26	0.175	0.19	0.19	0.253		
Survival Rate Deta	il										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0619HA_C1	CS	0.800	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
1819-DW38-SC5R		0.200	0.400	0.200	0.100	0.300	0.300	0.300	0.400		
1819-DW38-FD		0.400	0.400	0.200	0.200	0.200	0.200	0.200	0.300		
Survival Rate Bino	mials										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8		
CE_0619HA_C1	CS	8/10	10/10	10/10	10/10	10/10	10/10	10/10	10/10	0.0	
1819-DW38-SC5R		2/10	4/10	2/10	1/10	3/10	3/10	3/10	4/10		
1819-DW38-FD		4/10	4/10	2/10	2/10	2/10	2/10	2/10	3/10		

. .

Analyst: RG QA: MM

Client:

Condor Earth

Species: Hvalella azteca

Environmental Consulting and Testing

Test ID#: _____83055

Project#: 30078

80 - NO		
Organism Supplier:	ABS	

			Test M	faterial		Water Quality Measurements			G1 00		
Day	Date		Con	trol		Parameter	Value	Meter ID	Sign-off:		
			# Live O	rganisms		pН	7.51	PH26	AM Change: 5R		
0	6/22/19	A 10 E	3 10	C 10	D10	D.O. (mg/L)	8.7	RD12	WQ: JR		
		E 10 F	10	G 10	н (О	Conductivity (µS/cm)	448	EC14	Initiation Time: 1127		
						Alkalinity (mg/L)	162		Initiation Counts: - TF		
						Hardness (mg/L)	- 152		Confirmation Counts:		
						Ammonia (mg/L)	21.00	DR3800	PM Feed: TR		
		* * * * * *	* * * * *			Temp. (°C)	22.2	113A			
			# of Mo	ortalities		Old D.O. (mg/L)	7-2	RP13	AM Change: NN WQ: NN		
1	6/25/19	A O B	0	° O	D 0	New D.O. (mg/L)	8.1	KAIS	Mortality Counts: NN		
	- 、 ・	E O F	0	G ()	н ()	Temp. (°C)	22.1	1134	PM Change: NN PM Feed NN		
			# of Mo	ortalities		Old D.O. (mg/L)	7.0	RD12	AM Change: WQ: TD		
2	06/24/19	A O B	0	° ()	D ()	New D.O. (mg/L)	7.7	RD12	Mortality Counts:		
		E Û F	0	G O	н ()	Temp. (°C)	22.2	54	PM Change: TO PM Feed: TO		
	il d		# of Mo	ortalities	-	Old D.O. (mg/L)	6.3	RD12	AM Change: NN WQ: NN		
3	06/25/9	A O B	0	° O	D O	New D.O. (mg/L)	7.7	RA12	Mortality Counts: NN		
	L	e O F	Ø	G O		Temp. (°C)	22.1	81A	PM Change: K6 PM Feed K6		
			# of Mo	ortalities	In	Old D.O. (mg/L)	6.8	ZD12	AM Change: 74 WQ: 74		
4	62619	<u>а О в</u>	0	с <u>О</u>	^D 0	New D.O. (mg/L)	7.6	RDR	Mortality Counts: 7		
		E O F	0	c ()	н 0	Temp. (°C)	22.2	57	PM Change: AR PM Feed: AR		
		A to In	# of Mc	ortalities	In (1)	Old D.O. (mg/L)	6.7	EP13	AM Change: SAT WQ: SAT		
5	6127114		0	0	0	New D.O. (mg/L)	7.6	RD13	Mortality Counts: SAT		
-			0		" ()	Temp. (°C)	MA		PM Change: ID PM Feed: ID		
	CLORINE	A B	# of Mo	ortalities	In (A	Old D.O. (mg/L)	5,4	RDU	AM Change SAT WO SAT		
6	6/28/14		Ø		H ()	New D.O. (mg/L)	7.7	FUN FUN	Mortality Counts: SAT		
		0	0	° U	° 0	Temp. (°C)	22.0	59	PM Changer PM Feedbar		
7	LIDOLO	A (m B	# of Mc	ortalities	D	Old D.O. (mg/L)	6.3	EU12	Mortality Country DA		
/	6/24/14	E O F	0			New D.O. (mg/L)	7.5	KD12	PM Change: OI		
		0	0	0		Temp. (°C)	16.0	DOGA	AM Change: AM PM Feed:		
0	120/0	A CA B	# of Mo	c C	D	New D.O. (mg/L)	9.5	KUIO	Mortality Counts: 044		
0	ang	E	\sim	G	н	Tree (°C)	001	FUN	PM Change		
			0	\mathcal{O}		Old D.O. (mg/L)	LL.	10015	AM Change: ANJ WO: ANJ		
9	3/ 1.	A D B	# of Mo	c D	D	New D.O. (mg/L)	2.6	RAID	Mortality Counts:		
	TOILIO	E O F	0	G	H D	Temp (°C)	1.2.0	NUIU	PM Change: AND PM Feed		
			# A	live		pH	727	1064	WQ: SAT		
10	71210	A Q B	In	° 10	D 10	D.O. (mg/L)	5.2	002	Termination Counts: TL		
	11 201	E I F	10	GIO	H IA	Conductivity (uS/cm)	452	6/12	Termination Time:		
						Alkalinity (mg/L)	1107318				
						Hardness (mg/L)	1197				
						Ammonia (mg/L)	(1.00)	013800			
						Temp. (°C)	22.1	106 A			

CETIS Analytic	cal Repo	ort				Rep	Report Date: 04 Jul-1			11 (p 3 of 4)	
							lest	Code:	CE_0619	JHA_C1 08	3-4491-9923
Hyalella 10-d Surv	ival and Gr	owth Sedin	nent Test							Pacif	ic EcoRisk
Analysis ID: 03-	7524-8055	End	point: Sur	vival Rate			CET	IS Version:	CETISv	1.9.2	
Analyzed: 04	Jul-19 13:11	Ana	lysis: Nor	nparametric-	Two Samp	le	Offic	ial Results:	Yes		
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Angular (Corrected)	•	C > T					1819-DW	38-SC5R fai	led surviva	i rate	6.32%
Wilcoxon Rank Su	ım Two-Sar	nple Test									
Sample I vs	Sample II		Test Stat	Critical	Ties D	F P-Type	P-Value	Decision(α:5%)		
Control Sed	1819-DW3	38-SC5R*	36	n/a	0 1	4 Exact	7.8E-05	Significant	Effect		
ANOVA Table											
Source	Sum Squa	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(α:5%)		
Between	2.7505		2.7505		1	206	<1.0E-37	Significant	Effect		
Error	0.187045		0.0133603	3	14						
Total	2.93755				15						
Distributional Test	s										
Attribute	Test				Test Sta	Critica	P-Value	Decision(α:1%)		
Variances	Variance F	Ratio F Test			1.3	8.89	0.7381	Equal Vari	ances		
Distribution Shapiro-Wilk W Normality Test					0.769	0.841	0.0011	Non-Norm	al Distribut	ion	
Survival Rate Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCI	. Mediar	n Min	Max	Std Err	CV%	%Effect
CE_0619HA_C1	CS	8	0.975	0.916	1.000	1.000	0.800	1.000	0.025	7.25%	0.00%
1819-DW38-SC5R		8	0.275	0.188	0.362	0.300	0.100	0.400	0.037	37.64%	71.79%
Angular (Corrected	i) Transfori	ned Summ	ary								
Sample	Code	Count	Mean	95% LCL	95% UCL	. Mediar	Min	Max	Std Err	CV%	%Effect
CE_0619HA_C1	CS	8	1.37	1.28	1.46	1.41	1.11	1.41	0.0381	7.85%	0.00%
1819-DW38-SC5R		8	0.545	0.442	0.647	0.58	0.322	0.685	0.0434	22.56%	60.36%
Graphics											
1.0	y					0.15					
	6										
0.9						0.10					
0.8						0.05				8	
0.7						0.00	0.00.00.00				
0.6						0.05 OC					
20 20 10 10 10 10							• >	6			
						-0.10	1				
						-0.15					
0.3			1111			-0.20					
0.2						-0.25	٠				
0.1							•				
0.0	CE_0619HA_C1		1819-DW38-	SC5R		-0.30 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1	.0 1.5	2.0
								Rankits			

CETI	ETIS Analytical Report									Report Date: 04 Jul-19 13:11 (p			11 (p 1 of 4)
									Test	Code:	CE_0619	9HA_C1 08	8-4491-9923
Hyale	lla 10-	d Surv	ival and G	rowth Sedir	nent Test	_						Pacif	ic EcoRisk
Analy	sis ID	: 06-	5279-2923	Enc	ipoint : Me	an Dry Weig	ht-mg		CET	S Version:	CETISv	.9.2	
Analy	zed:	04	Jul-19 13:1	11 Ana	alysis: Pa	rametric-Two	o Sample		Offic	ial Results:	Yes		
Data 1	Fransf	orm		Alt Hyp					Comparis	on Result			PMSD
Untrar	nsform	ed		C > T					1819-DW	38-SC5R pa	ssed mean	dry weight-	118.56%
Unequ	ual Va	riance	t Two-San	nple Test									
Samp	le I	vs	Sample	I	Test Stat	Critical	MSD DI	P-Type	P-Value	Decision(α:5%)		
Contro	ol Sed		1819-DW	/38-SC5R	-1.98	1.89	0.065 7	CDF	0.9557	Non-Signif	icant Effec	t	
ANOV	'A Tab	le											
Sourc	е		Sum Squ	lares	Mean Squ	Jare	DF	F Stat	P-Value	Decision(α:5%)		
Betwe	en		0.018196	4	0.0181964	\$	1	3.91	0.0681	Non-Signif	icant Effec	t	
Error			0.065212	:1	0.0046580)	14						
Total			0.083408	6			15						
Distrib	oution	al Test	s										
Attribu	ute		Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances Variance Ratio F Test							83.4	8.89	6.6E-06	E-06 Unequal Variances			
Distribution Shapiro-Wilk W Normality Test					0.882	0.841	0.0414	Normal Dis	stribution				
Mean	Dry Ŵ	/eight-r	ng Summ	ary									
Sampl	le		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
CE_06	519HA	_C1	CS	8	0.0545	0.0457	0.0633	0.0515	0.041	0.0763	0.00371	19.27%	0.00%
1819-0	DW38-	SC5R		8	0.122	0.0418	0.202	0.0867	0.0325	0.295	0.0339	78.66%	-123.69%
Graph	ics												
	0.30							0.18					
								0.16		1		•	
	0.25							0.14					
								0.12					
	0.20						e.	C.10					
Ē							Center	U.08			9	1 m	
Veight	0.15						-	5 0.04					
Dry V								0.62					
Mean	0 10				7///	11,		0.00	안 한 것 같 것	To Protor	6-6		
				·	1111	<u> </u>		-0.02		14 B			
	0.05		····	z				-0.04					
	0.03							-0.08					
	G.00							-0.10	-1.5 -1.0	-0,5 0.0	0.5 1		20
:			CE_0619HA_C1		1819-DW38	SC5R		£.0		Rankits	0.5 L.	- 1.J	2.0

Analyst: RC QAT

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condo	dor Earth Project#: 30078				Organism Log #:	(165	2	Age: 10-11 days
Species:	Hyalelle	a azteca	Test ID#:	83055		Organism Supplier:		A	BS
Dav	Date		Test M	laterial		Water Qua	ality Measure	nents	Sign-off:
Day	Dutt	1819-0	w38-sc	25R		Parameter	Value	Meter ID	
			# Live O	rganisms	1	pH	7.50	PH26	AM Change: 5R
0	6/22/19	A 10	B 10	C 10	DIO	D.O. (mg/L)	7.9	RD12	^{WQ:} JR
		E 10	F 10	G) j	H 10	Conductivity (µS/cm)	424	EC14	Initiation Time: (12Z
						Alkalinity (mg/L)	V 62.0		Initiation Counts: TF
						Hardness (mg/L)	138		
						Ammonia (mg/L)	1.06	DR3800	PM Feed: JA
						Temp. (°C)	12.2	113A	
			# of Mo	ortalities	ID .	Old D.O. (mg/L)	2.2	RDI3	AM Change: NN WQ: NN
1	(1-2/19	<u> 0 </u>	B Q	0	0	New D.O. (mg/L)	8.1	RA13	
	Plenn	0	0	^G ()	ⁿ O	Temp. (°C)	22.1	113 A	PM Change: NN PM Feed Jun
			# of Mo	ortalities	D A	Old D.O. (mg/L)	6.2	RD12	AM Change: ID WO FD
2	06124/19	<u>0</u>	в ()	0	0	New D.O. (mg/L)	7.4	RD12	Mortality Counts: TO
		^в ()	r 0	0	n ()	Temp. (°C)	22.2	54	PM Change: ID PM Feed: ID
	1. 1		# of Mo	ortalities	D t	Old D.O. (mg/L)	6.0	RDIZ	Am Change: NN WQ: NN
3	6/25/19	Ô Ô	° 0	0	0	New D.O. (mg/L)	7.0	RD12	
		5 Ø	r V	° ()	" U	Temp. (°C)	22.1	81A	PM Change: K6 PM Feed.K6
			# of Mo	ortalities	D a	Old D.O. (mg/L)	6.1	RDIZ	AM Change wu
4	6/26/19	<u>^ ()</u>	^B ()	<u> </u>	0	New D.O. (mg/L)	7.6	RD12	Mortality Counts: 7
		° ()	[0	° 0	" O	Temp. (°C)	22.2	57	AM Changes AR PM Feed: AR
			# of Mo	ortalities	D (2)	Old D.O. (mg/L)	6.3	R013	An Changes AT WO SLAT
5	6/27/19	^O	° 6	° O	H O	New D.O. (mg/L)	7.7	PIZ	PM Change
		- 0	0	0	0	Temp. (°C)	NM		AM Change: O WO a
	ALDONIO	A A	# of Mo	ortalities	D C	Old D.O. (mg/L)	5.8	1201	Mortality Counts
6	6/28/14	E O	F	G	H ()	New D.O. (mg/L)	7.2	14/11	PM Change
			0	0	0	Temp. (°C)	33.0	04	AM Change OA I WO OA
	Upaha	A tu	# of Mo	ortalities	D A	Old D.O. (mg/L)	6.4	KVIC	Mortelity Counts: 244
/	6124119	E D	F O			New D.O. (mg/L)	1.1	KUIL	PM Change: Out must work
		- 0	0	0	r 0	Temp. (°C)	22.1	116A	AM Change: C A WO
	1.120/10	A Co	# of Mo	ortalities	D O		6.4	CDIO	Mortality Counts: Q14
8	0100101	E O	F O	G D	H O	New D.O. (mg/L)	00.0	KDIO	PM Change
		0	0	0	0		12.0	106A	AM Change: WO: .t
	al dea	A 0	# of Mo	ortalities	D		6.	6010	Mortality Counts:
9	7/01/19	E D	E O	G	<u>р</u>	New D.O. (mg/L)	7.5	6010	PM Change: AND DATE 1
		U		<u> </u>	D	Temp. (C)	220	WER	WO: CA-
10	Tinles	A O	# A	C -	D	DO (mc/l.)	1.20	PH25	Termination Counts:
10	112 119	E 2	FZ	GZ	H L/	Conductivity (uS/cm)	0,0	1213	Termination Time: (2570)
						Alkalinity (mo/T)	425	2613	
						Hardness (ma/L)	1/191		
						Ammonia (mg/L)	CIN	00 2000	
							200	VILSBUG	
						1emp. (°C)	001	1069	

Client:	Condor Ea	rth	Project #:	30078	Balance ID: <u>bally</u>
Sample ID:	1819-DW38-SC5R		Tare Wt Date:	6125119	Sign-Off: <u>AR</u>
Test ID #:	83055		Final Wt Date:	713119	Sign-Off: SAT
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight
	Replicate	(mg)	(mg)		(mg)
1	Control A	62.78	63,39	28	0.0763
2	Sediment B	75.40	75.96	4 10	0.056
3	C	67.99	68,40	2 10	0.041
4	D	68.40	68.91	T 10	0.051
5	E	65.13	65.64	5 10	0.051
6	F	72.04	72,56	10	0.052
7	G	75, 49	76,10	10	0.061
8	Н	60.25	60.73	10	0.048
9	SC5R A	66.27	66.37	2	0.050
10	В	70.59	70,72	4	0.0325
11	C	78.22	78.81	2,	0.295
12	D	69.44	69.63	}	0.190
13	E	67.12	67.26	3	0.0467
14	F	67.94	68.52	3	0.193
15	G	67.76	68.13	3	0.123
16	Н	69.57	69.75	4	0.045
QA1		62.15	62.15		-
QA2		68.98	69,02		
QA3		76.81	76.75		

Hyalella azteca Weight Data Sheets

CETIS Analyti	cal Repo	ort					Repo	rt Date:	04	Jul-19 13:1	11 (p 4 of 4)
							Test	Code:	CE_0619	9HA_C1 08	8-4491-9923
Hyalella 10-d Surv	vival and Gr	owth Sedi	ment Test							Pacif	ic EcoRisk
Analysis ID: 03-	7954-3934	End	dpoint: Su	vival Rate			CETI	S Version:	CETISv	1.9.2	
Analyzed: 04	Jul-19 13:11	i Ana	alysis: Pa	ametric-Two	Sample		Offic	ial Results:	Yes		
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Angular (Corrected))	C > T					1819-DW3	88-FD failed	survival ra	te	5.77%
Equal Variance t T	wo-Sample	Tost									
Equal variance ()	Semale II	5 1631	Tool Stat	Osition		DTune	D Value	Decision/			
Control Sed	1819-DW/9	38-FD*	16	1.76	0.092 14	CDE	<1 0E-37	Significant	Effect		
					0.002 14						
ANOVA Table											
Source	Sum Squa	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision(x:5%)		
Between	2.82572		2.82572		1	258	<1.0E-37	Significant	Effect		
Total	2.9793		0.010970-	•	14						
								_	_		in contract to the
Distributional lesi	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision(c	x:1%)		
Distribution	Shapiro-W	ratio Files /ilk W Norm	t nality Test		1.13	0.841	0.8801	Equal Varia	ances		
Biotribution					0.047		0.0120				
Survival Rate Sum	mary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0619HA_C1	CS	8	0.975	0.916	1.000	1.000	0.800	1.000	0.025	7.25%	0.00%
1619-DVV30-FD		0	0.263	0.186	0.339	0.200	0.200	0.400	0.032	34.90%	/3.08%
Angular (Corrected	d) Transforr	med Sumn	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0619HA_C1	CS	8	1.37	1.28	1.46	1.41	1.11	1.41	0.0381	7.85%	0.00%
1819-DW38-FD		8	0.533	0.448	0.618	0.464	0.464	0.685	0.0359	19.05%	61.18%
Graphics											
10	ور المراجع المراجع المراجع المراجع المراجع					0.20					
0.9				Reject Null		0.15					
0.8	,	1				0.10			1		
0.7					P	0.05 5		• • •		•	
0.6					Cente	0.00 -					-1
al Rat						-0.05					
UNING 0.4						-0.10					
						-0.15					
			1111	77)		-0.20					
0.2			Landred and a	erne Caucollanci		-0.25					
0.1						•					
0.0	CE_0619HA_C1		1819-DW38	I-FD		-0.30 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1.	0 1.5	2.0
								Rankits			

Analyst: 16 QA:pp

CETIS Analyt	ETIS Analytical Report						Repo Test	ort Date: Code/ID:	08 CE_061	3 Jul-19 16:2 9HA_C1 / 0	28 (p 1 of 1) 8-4491-9923
Hyalella 10-d Surv	vival and Gro	owth Sedir	nent Test							Pacif	ic EcoRisk
Analysis ID: 11- Analyzed: 08	9901-3606 Jul-19 16:27	End Ana	lpoint: Me Ilysis: Pa	an Dry Weig rametric-Two	ght-mg o Sample		CET Stat	IS Version: us Level:	CETISv1	1.9.6	
Data Transform		Alt Hyp					Comparis	son Result			PMSD
Untransformed		C > T					1819-DW	38-FD pass	ed mean dr	y weight-mg	102.59%
Unequal Variance	e t Two-Samp	ole Test									
Sample I vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision	(α:5%)		
Control Sed	1819-DW3	8-FD	-5.2	1.89	0.056 7	CDF	0.9994	Non-Sign	ificant Effec	t	
ANOVA Table											
Source	Sum Squa	ires	Mean Squ	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.0944914		0.0944914	4	1	27.1	1.3E-04	Significar	t Effect		
Error	0.0488313		0.003488		14						
Total	0.143323				15						
ANOVA Assumpti	ons Tests										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variance	Variance R	atio F Test			62.2	8.89	1.8E-05	Unequal Variances			
Distribution	Shapiro-W	ilk W Norm	ality Test		0.877	0.841	0.0354	Normal D	istribution		
Mean Dry Weight-	mg Summar	у									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_0619HA_C1	CS	8	0.0545	0.0457	0.0633	0.0515	0.041	0.0763	0:00371	19.27%	0.00%
1819-DW38-FD		8	0.208	0.139	0.277	0.19	0.11	0.365	0.0293	39.79%	-281.85%
Graphics											
0.40						0.16					
						0.14					
0.35						0.12					
0.30						0.10					
						0.08		1			
g 0.25					2	0.06					
eight			TTP		enter	0.02					
A 0.20			1111		Ú	5 0.00			0.0.0		
U.15						-0.02	3				
0.10						-0.04					1
0.10		1				-0.06	1				1
0.05						-0.10					
0.00						-0.12					
0.00	CE_0619HA_C1		1819-DW3	38-FD		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.4	0 1.5	2.0

ŝ

Analyst: Alt QAM

10-Day Hyalella azteca Sediment Toxicity Test Data

Client:	Condo	r Earth	Project#:	30078	_	Organism Log #:	11652		Age: 10-11 dow				
Species:	Hyalella	a azteca	Test ID#:	84268		Organism Supplier: ABS							
Ir						W to O							
Day	Date		Test M	aterial		Water Qua	ality Measurer	nents	Sign-off:				
	1819-DW38-FD				Parameter	Value	Meter ID	AM Change:					
	1 loglia	A	# Live Or	ganisms	Da	pH	4.54	PH20	WO:				
0	612411	A 10	F (2)	C (U	40 H (2	D.O. (mg/L)	8.0	KUIL					
				° <i>10</i> 	- <i>10</i>	Allaliait (us (T)	420		Initiation Counts: $\pm \Gamma$				
						Alkalinity (mg/L)	* 65.L		Confirmation Counts:				
						Hardness (mg/L)	1 76		THE FR				
						Ammonia (mg/L)	1.00	DR3800					
						Old D.O. (TC)	dd.L	1154	AM Change WO				
		A 0	# of Mo	rtalities	D	Old D.O. (mg/L)	7.0	Rp13	Mortality Counts				
	6/23/19	E ()	F		D H A	New D.O. (mg/L)	8.1	RA13	PM Change				
<u> </u>		- 0	0	0	0	Temp. (°C)	22.2	11SA	AM Change: W/ PM Feed: //				
	ación ha	A 0	# of Mo	rtalities	D	Old D.O. (mg/L)	6.0	KD12	Mortality Counts				
2	061/24/19	~ () E	E 0		<u> </u>	New D.O. (mg/L)	7-4	RD12	Monanty Counts. IO				
		- 0	1 ()	0	<u> </u>	Temp. (°C)	22.2	54	M Change. ID PM Feed: ID				
	6/25/14		# of Mo	rtalities	lp.	Old D.O. (mg/L)	6.1	RO12	Alvi Change: PN WQ: NN				
3		^ D	BO	0		New D.O. (mg/L)	1-1	RD12	Mortality Counts:				
		E ()	FU	<u> 0 </u>	н О	Temp. (°C)	22.1	81A	PM Change: PM Feed 46				
	6/20/13		# of Mo	talities	1	Old D.O. (mg/L)	6.4	RDIZ	AM Change: WQ: 24				
4		<u>^ 0</u>	вО	° 0	^D ()	New D.O. (mg/L)	7.5	RD12	Mortality Counts: 7				
		e (FO	<u> </u>	н ()	Temp. (°C)	22.3	57	PM Change: AR PM Feed: AR				
	6/27/14		# of Mo	rtalities		Old D.O. (mg/L)	6.5	QD3	AM Change AT WQ: SAT				
5		A Ø	BO	0	D O	New D.O. (mg/L)	7.9	RD13	Mortality Counts: SAT				
		εO	FO	3 0	н О	Temp. (°C)	NM		PM Change: JD PM Feed: FD				
			# of Mo	rtalities		Old D.O. (mg/L)	6.4	RDI	AM Change: SAT WO:SAT				
6	6/28/19	^ <u>O</u>	BO	° 0	D O	New D.O. (mg/L)	7.6	RDI	Mortality Counts: SAT				
		е ()	FO	3 O	н О	Temp. (°C)	22.1	54	PM Change SAT PM Feed, MAT				
	1		# of Mo	rtalities		Old D.O. (mg/L)	6-1	RD12	AM Change: AM WQ: PM				
7	6129/19	A Ó	B O	° O	D O	New D.O. (mg/L)	7.6	RDIZ	Mortality Counts: PSN				
		е О	FO	G C	н (С	Temp. (°C)	22.0	1067	PM Change: PM PM Feed: BM				
	1.1.0		# of Mo	rtalities		Old D.O. (mg/L)	6.7	RDIO	AM Change: BM WQ: BU				
8	630119	^ O	BO	0	D	New D.O. (mg/L)	7.1	RDIO	Mortality Counts:BM				
		е ()	FO	30	н О	Temp. (°C)	22.1	106A	PM Change: PM Feed.				
			# of Mo	rtalities		Old D.O. (mg/L)	6.0	5010	AM Change: NN WQ: NN				
9	F 7/0/19	A O	BO	0	DD	New D.O. (mg/L)	7.8	RDIO	Mortality Counts: NN				
	U.9	е О	F	³ 0	н О	Temp. (°C)	HHH 922.1	106A	PM Change: NN PM Feed: NN				
			# A1	ive		pН	7,24	1725	WQ: SAA				
10	TIDLIG	AY	вц	2	D 7	D.O. (mg/L)	5,9	2013	Termination Counts: KL				
	רויזן	E 2	F 2	2	н З	Conductivity (µS/cm)	421	8(13	Termination Time: 1070				
						Alkalinity (mg/L)	v 54						
						Hardness (mg/L)	126						
						Ammonia (mg/L)	LIDD	0R34m					
						Temp. (°C)	021	1064					
Description of the second							La sette 1						

Client:	Condor Ea	rth	Project #:	30078	Balance ID: Baloy		
Sample ID:	1819-DW38	B-FD	Tare Wt Date:	6125119	Sign-Off: <u>AR</u>		
Test ID #:	84268		Final Wt Date:	7/3/19	Sign-Off: SAT		
Pan	Concentration	Initial Weight.	Final Weight.	# organisms	Ave Weight		
1 6111	Replicate	(mg)	(mg)	" organionio	(mg)		
1	Control A	62.78	63.39	8	0.0763		
2	Sediment B	75.40	75.96	(0	0.056		
3	С	67.99	68,40	10	0.041		
4	D	68 40	68.91	10	0.051		
5	E	65.13	65.64	10	0.051		
6	F	72.04	72,56	(10	0.052		
7	G	15.49	76.10	10	0-061		
8	Н	60.25	60.73	10	0.048		
17	FD A	64.19	64,63	4	0.110		
18	В	62.54	63.03	4	0.122		
19	С	71.05	71.78	2	141.0 7.86 0,365		
20	D	62.08	62.60	ζ	0.260		
21	E	58.26	58.61	2,	0.175		
22	F	58.85	59.23	2	0.190		
23	G	65.58	65.96	2	0.190		
24	Н	69.35	70.1	3	0.253		
QA1		62 15	62.15		_		
		68.98	69.02				

Hyalella azteca Weight Data Sheets

QAQ

QA3

76.81 76.75

Hyalella azteca Weight Data Sheets

Client:	Condor Earth	Test Init Date:	6/22/19	Balance ID:	Baloy
Sample ID:	TO	Tare Wt Date:	6/22/19	Sign-Off:	TA
Test ID:	83055	Final Wt Date:	6/26/19	Sign-Off:	AR
Project #:	30078				

Pan	Concentration Replicate	Initial Weight. (mg)	Final Weight. (mg)	# Organisms	Ave Weight (mg)
	i	(0)	(0)		(
1	TO A	69.81	70,45	10	0.064
2	В	65-22	65.54	10	0.032
3	С	63.49	64.16	10	0.067
4	D	65-88	66.24	10	0.036
5	E	65.64	66.06	10	0.042
6	F	58-23	58.37	10	0.014
7	G	64.75	65.04	10	0.029
8	Н	57.55	57.95	10	0.040
QA		53.35	53.34		

Appendix E 2018-2019 Water Column Toxicity Results

Water Column Toxicity Lab Report November 29, 2018 at SC-1R Wet Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 January 4, 2019

Micheline:

I have enclosed our report "An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample" for testing performed on the ambient water sample collected on November 29, 2018. The results of this testing are summarized below:

Toxicity summary for the Stockton Stormwater Program ambient water sample.										
	Toxicit	Toxicity relative to the Lab Control treatment?								
Sample ID	Ceriodap	hnia dubia	Fathead Minnow							
	Survival	Reproduction	Survival	Growth						
SC-1R	no	no	no	no						

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in C. dubia survival or reproduction in the SC-1R sample.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in the SC-1R sample.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 29659.

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected November 29, 2018

Prepared For

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

January 2019

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected November 29, 2018

Table of Contents

Page

 1. INTRODUCTION
 1

 2. CHRONIC TOXICITY TEST PROCEDURES
 1

 2.1 Sample Receipt and Handling
 1

 2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia
 1

 2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows
 2

 3. RESULTS
 4

 3.1 Chronic Effects of Ambient Water Sample on Ceriodaphnia dubia
 4

 3.2 Chronic Effects of Ambient Water Sample on Fathead Minnows
 4

 4. SUMMARY AND CONCLUSIONS
 5

 4.1 QA/QC Summary
 5

Appendices

Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Sample
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Chronic Toxici

- Appendix B Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to *Ceriodaphnia dubia*
- Appendix C Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

i

1. INTRODUCTION

Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to evaluate the chronic toxicity of ambient water sample. This evaluation consisted of performing the following US EPA freshwater chronic toxicity tests:

- 3-brood survival and reproduction test with Ceriodaphnia dubia; and
- 7-day survival and growth test with larval fathead minnows (Pimephales promelas).

The current evaluation was performed using an ambient water sample collected on November 29, 2018 and designated SC-1R. This report describes the performance and results of these tests.

2. CHRONIC TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 Sample Receipt and Handling

On November 29, an ambient water sample was collected into appropriately cleaned sample containers. The sample was transported and delivered on ice and under chain-of-custody to the PER laboratory in Fairfield, CA. Upon receipt at the laboratory, aliquots of the sample were collected for analysis of initial water quality characteristics (Table 1). The sample was then stored at $\leq 6^{\circ}$ C, except when being used to prepare test solutions. The chain-of-custody record for the collection and delivery of this sample is presented in Appendix A.

	Table 1. Initial water quality characteristics of the sample.												
Sample Receipt Date	Sample ID	Temp. (°C)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)							
11/29/18	SC-1R	2.1	7.11	5.7	65	73	266	<1.0					

2.2 Survival and Reproduction Toxicity Testing with Ceriodaphnia dubia

The chronic toxicity test with *C. dubia* consists of exposing neonate organisms to the ambient water for the length of time it takes for the Control treatment females to produce three broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this testing are described below.

The Lab Water Control medium for this testing consisted of a moderately hard synthetic reconstituted freshwater, prepared by addition of reagent grade chemicals to Type 1 lab water. The ambient water sample was tested at the 100% concentration only. For each test treatment, a

200 mL aliquot of test solution was amended with the alga *S. capricornutum* and Yeast-Cerophyll[®]-Trout Food (YCT) to provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this testing.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. The tests were initiated by allocating one neonate (<24 hours old, and within 8-hours of age) *C. dubia*, obtained from in-house laboratory cultures, into each replicate cup. The test replicate cups were placed into a temperature-controlled room at 25°C, under cool white fluorescent lighting on a 16L:8D photoperiod.

Each day of the test, fresh test solutions were prepared and characterized as before, and a new set of replicate cups were prepared. The test replicates containing the test organisms were examined, with surviving organisms being transferred to the corresponding new replicate cup. The contents of each of the remaining old replicate cups was carefully examined and the number of neonate offspring produced by each parent organism was determined, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution from one randomly-selected replicate at each treatment.

After it was determined that $\geq 60\%$ of the *C. dubia* in the Lab Water Control treatment had produced their third brood of offspring, the tests were terminated. The resulting survival and reproduction data were analyzed to evaluate any impairment caused by the ambient waters. All statistical analyses were performed using CETIS[®] (TidePool Scientific Software, McKinleyville, CA).

2.3 Survival and Growth Toxicity Testing with Larval Fathead Minnows

The chronic toxicity test with fathead minnows consists of exposing larval fish to the ambient water for seven days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

Pathogen-related mortality (PRM) in chronic fathead minnow toxicity tests of ambient or ponded waters is a common confounding problem that must be controlled in order to determine the toxicity of sample waters. The US EPA has recognized this problem, and has recommended a variety of potential modifications to the testing approach that can be implemented to minimize PRM interference. The approach used in this study, described below, has the advantage of minimizing the PRM interference without affecting the water sample matrix.

The larval fathead minnows used in this testing were obtained from a commercial supplier (Aquatox, Hot Springs, AR). Upon receipt at the lab, the fish were held in aerated tanks containing Lab Water Control medium, and were fed brine shrimp nauplii *ad libitum* during this pre-test holding period.

The Lab Water Control medium for this testing consisted of EPA moderately-hard synthetic freshwater. The ambient water sample was tested at the 100% concentration only. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 10 replicates for each test treatment, each replicate consisting of 20 mL of test solution in a 30-mL test replicate container. The tests were initiated by randomly allocating two larval fathead minnows (<48 hours old) into each replicate. The replicate containers were then placed in a temperature-controlled room at 25°C, under fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each day of the tests, fresh test solutions were prepared and characterized as before. The test replicate containers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the old test solution in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected replicate at each treatment.

After seven days exposure, the tests were terminated and the number of live fish in each replicate was recorded. The fish from each replicate were carefully euthanized in methanol, rinsed in deionized water, and transferred to a pre-dried and pre-tared weighing pan. Replicates were paired to obtain five composite replicates for each test treatment. The fish were then dried at 100°C for \geq 24 hours and re-weighed to determine the total dry weight of fish in each replicate. The total dry weight was then divided by the initial number of fish per composited replicate to determine the "biomass value." The resulting survival and biomass value data were analyzed to evaluate any impairments caused by the ambient waters. All statistical analyses were performed using the CETIS statistical software.

3. RESULTS

3.1 Chronic Effects of Ambient Water Sample on Ceriodaphnia dubia

The results of this testing are summarized in Table 2. There were no significant reductions in *C*. *dubia* survival or reproduction in the SC-1R sample. The test data and summary of statistical analyses are presented in Appendix B.

Table 2. Chronic effects of the ambient water sample on Ceriodaphnia dubia.									
Treatment/Sample ID	Mean % Survival	Mean Reproduction (# neonates/female)							
Lab Water Control	100	26.6							
SC-1R	100	26.5							

3.2 Chronic Effects of Ambient Water Sample on Fathead Minnows

The results of this testing are summarized in Table 3. There were no significant reductions in fathead minnow survival or growth in the SC-1R sample. The test data and summary of statistical analyses for this testing are presented in Appendix C.

Table 3. Chronic effects of the ambient water sample on fathead minnow.									
Treatment/Sample ID	Mean % Survival	Mean Biomass Value (mg)							
Lab Water Control	100	0.41							
SC-1R	90	0.42							

4. SUMMARY AND CONCLUSIONS

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There were no significant reductions in C. dubia survival or reproduction in the SC-1R sample.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in fathead minnow survival or growth in the SC-1R sample.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All test analyses were performed according to laboratory Standard Operating Procedures.

Negative Control –The biological responses at the Lab Control treatments were within acceptable limits.

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Sample

Sample Results TAT: Rush Standard				(In-		Condor					r I	· Earth T			<i>`echnologi</i>		s, Inc.			
SHIPPED TO: C				С	OND	OR		9.532.0361 9.532.0361 9.532.0773	721663 Bria 5370 fax		Z Sto 20 20	8 Frank West ockton, CA 9 9.234.0518 9.234.0538 fr	Circle, Suit 5206 ax		2941 Sunrise Blvd, Suite 1 Rancho Cordova, CA 957 916.783.2060 916.783.2464 fax	50 1739 42 Mer 209. 209.	9 Ashby Road, Suite B ced, CA 95348 388.9601 388.1778 fax			
Pacif	c EcoF	Risk								<u>SEND</u>	RESU	LTS TO	<u>):</u>				<i>4</i> 1 a			
2250	Corde	lia Road							-		NAN	1E:		Miche	aline D	oyle k	th com			
Fairfi	eld, CA	94534 (707) 207-7	7760								E-M F-M	AIL:		тира	<u>w</u> conc	loreal	(11.0011			
									_		D M		DIE	ASEE	V/EM			DECOMAI		
РROЛ	ECTNA	ME/LOCATION: CO	OS Urban Discl	harg	e	EDF RE	SULT	'S RE	QUIR	ED	ES 🔽	NO	FLE	ASEF		E GLO	BAL ID:	JKE55 MAI	KKED ABOVE	
PROJ	ECT NC	^{).:} 6066J-06-01		T					.e	MO										
SAMP	LEDB	Y: (Signature)							daphr	minr										
Date	Time	Sample Site Name	Sample ID (if different)	Matrix	# of containers	Preservatives (see below)	ANALYSIS /METHOD:	Field Filtered	Chronic Cerioo	Chronic flathead							REMARKS		LAB ID#	
11/29/18	1125	1819-SE68-	SC-1R	S	2	1		N	\checkmark	\checkmark							chronic Ceriodaphnia	dubia toxicity		
																	chrionic flathead mi	nnow toxicity		
																	follow up dilutior	n series as		
																	necessary (100% mo	% mortality/24hrs)		
												CEDEN da		CEDEN data forma	at requested					
								ĺ		0										
D. L'																				
Relinqui	shed By: ((Signature)	n	Dat	e:///	129/10	Time:	3:	50	Receiv	red By: (ignature)	-					Pate: 18	Time: 3'50	
Matrix	snea By: ((Signature)			-	1				Recen	red By: (S	Signature)								
DW Dri	iking Wate	www waste water	Hazardous Waste (Wa	ater)	S	Soil/Solid	sw	St	torm Wate	er	Grou	nd Water		4°C	HCL	3 Na	OH 4 Na2S2O3 5	HNO3 6	H2SO4 7 Other	
			Original – Send					Ye	llow-	File							Pink – Log H	Book		
Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to *Ceriodaphnia dubia*

CETIS Summary Report

31 Dec-18 15:00 (p 1 of 1) CE 1118CD C1100-3851-1062

Report Date:

							Te	st Code:	CE_111	8CD_C1 0	0-3851-1062		
Ceriodaphnia Sur	vival and R	eproduct	ion Test							Pacif	ic EcoRisk		
Batch ID:16-1Start Date:30 NEnding Date:06 DDuration:5d 3	1797-3863 Nov-18 15:3 Dec-18 13:4 22h	Te 1 Pi 0 Si Se	est Type: Reprotocol: EP pocies: Ce pource: in-l	production-S A-821-R-02- riodaphnia d House Cultu	Survival (7d) 013 (2002) ubia re		Ar Di Br Ag	nalyst: Kris luent: Not ine: Not je: 1	stin Roberts Applicable Applicable	on			
Sample Code	Sample II	D Sa	ample Date	Receip	t Date	Sample Ag	e Cl	ient Name	P	roject			
CE_1118CD_C1 1819-SE68-SC-1R	01-2981-3 01-2665-4	3309 30 1881 29) Nov-18 15:3) Nov-18 11:2	1 30 Nov- 5 29 Nov-	18 15:31 18 15:50	n/a (24.5 °C 28h (2.1 °C	C) Co)	ondor Earth Te	echnologi 29	9659			
Sample Code	Material	Гуре	Sai	nple Sourc	е	Sta	ation Loca	ation	Lat/Long				
CE_1118CD_C1	Ambient V	Vater	Col	ndor Earth T	echnologie	s LA	BQA						
1819-SE68-SC-1R	Ambient V	Vater	Co	ndor Earth T	echnologie	s SC	-1R						
Single Comparison Summary Analysis ID Endpoint Comparison Mathed P Value Comparison Result													
Analysis ID End	point		Comparis	on Method			P-Value	e Comparis	son Result	t			
03-9265-9936 Rep	roduction		Equal Var	iance t Two-	Sample Te	st	0.4887	1819-SE6	58-SC-1R pa	assed repro	duction		
04-0620-0759 Surv	/ival		Fisher Exa	act Test			1.0000	1819-SE6	68-SC-1R pa	assed surviv	al		
Reproduction Sun	nmary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	Std Err	Std Dev	CV%	%Effect		
CE_1118CD_C1	LW	10	26.6	22.9	30.3	14	33	1.65	5.23	19.67%	0.00%		
1819-SE68-SC-1R		10	26.5	19.6	33.4	6	38	3.07	9.7	36.60%	0.38%		
Survival Summary													
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect		
CE_1118CD_C1	LW	10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
1819-SE68-SC-1R		10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
Reproduction Deta	ail												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
CE_1118CD_C1	LW	14	29	26	29	27	28	22	29	29	33		
1819-SE68-SC-1R		32	6	36	28	29	23	27	38	15	31		
Survival Detail													
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
CE_1118CD_C1	LW	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
1819-SE68-SC-1R		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
Survival Binomials	3												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
CE_1118CD_C1	LW	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1		
1819-SE68-SC-1R		1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1		

Analyst: R QA: m

•

CETIS And	alytic	al Re	port					Report Date:	22 Dec-	18 11:01 (p 1 of 1)
								Test Code:	CE_1118CD_	C1 00-3851-1062
Ceriodaphni	a Surv	ival and	Reprodu	uction Test						Pacific EcoRisk
Analysis ID:	04-0	620-075	9	Endpoint:	Survival			CETIS Version:	CETISv1.9.2	
Analyzed:	22 [Dec-18 1	1:00	Analysis:	Single 2x2	2 Contingency T	able	Official Results:	Yes	
Fisher Exact	Test									
Sample I	VS	Sampl	e ll	Test	Stat P-Ty	pe P-Value	Decisior	n(a:5%)		
Lab Water Co	ntrol	1819-S	E68-SC-	1R 1.000	Exac	t 1.0000	Non-Sigr	ificant Effect		
Data Summa	ry									
Sample		Code	NR	R	NR +	R Prop NR	Prop R	%Effect		
CE_1118CD_	C1	LW	10	0	10	1	0	0.0%		
1819-SE68-S	C-1R		10	0	10	1	0	0.0%		
Graphics										
1.0		e.		•						
0.9										
8.0										
0.7										
0.6										
S of										
0.4										
0.3										
0.2										
0.1										
0.0										
	CE_1118	CD_C1	1819-5	668-SC-1R	1819-SE58-SC-1	R				

Analyst: We QA:

CETIS Analyti	cal Repo	ort						Toet	Code:	CE 1115		-3851-1062
Ceriodaphnia Sur	vival and R	eproductio	n Test					1631		02_111	Pacif	ic EcoRisk
Analysis ID: 03- Analyzed: 22	9265-9936 Dec-18 11:(End	point: Rej Iysis: Par	production ametric-Two	o Sample)		CET	S Version: ial Results	CETISv Yes	1.9.2	
Data Transform		Alt Hyp						Comparis	on Result			PMSD
Untransformed		C > T						1819-SE6	8-SC-1R pa	ssed repro	duction	22.72%
Equal Variance t T	wo-Sample	e Test										
Sample I vs	Sample II		Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision	a:5%)		
Lab Water Control	1819-SE6	8-SC-1R	0.0287	1.73	6.04	18	CDF	0.4887	Non-Signi	ficant Effec	t	
ANOVA Table												
Source	Sum Squ	ares	Mean Squ	lare	DF		F Stat	P-Value	Decision	α:5%)		
Between	0.05		0.05		1		0.000823	0.9774	Non-Signi	ficant Effec	:t	
Error	1092.9		60.7167		18							
lotal	1092.95				19	_						
Distributional Test	S											
Attribute	Test				Test St	at	Critical	P-Value	Decision(α:1%)		
Variances	Variance I	Ratio F Test			3.44		6.54	0.0802	Equal Var	ances		
Distribution	Snapiro-w	/IIK VV Norm	ality lest		0.885		0.866	0.0215	Normal Di	stribution		
Reproduction Sum	nmary											
Sample	Code	Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
CE_1118CD_C1 1819-SE68-SC-1R	LW	10 10	26.6 26.5	22.9 19.6	30.3 33.4		28.5 28.5	14 6	33 38	1.65	19.67% 36.60%	0.00%
			20.0	19.0		_	20.0	0		5.07	30.00%	0.36%
Graphics												
40							15					
35							10				1	
							4				•	
30						Ţ	5				0	
30	776777		7777			Intered	5				•	-
30 25	776777		77778	777		Centered	5	•			•	
30 25 20	116/11	1 (10) (10) (10) (10)	7777	Reject Null		Centered	5 0 – –	•*			•	
30 25 20 20 23 20 20 20 20 25 20 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20			77772	Reject Null		Centered	5 0				0	a.
30 25 15 15	776777		7776	Reject Null		Centered	5 - -5 - -10 -				Ø	
30 25 20 20 25 20 20 25 20 25 20 20 25 20 20 20 20 20 20 20 20 20 20 20 20 20	776777		1116	Reject Nui		Centered	5 -0 -5 -10 -15					
30 25 20 15 10 5	776777		77776	Reject Nul		Centered	5 -0 -5 -10 -15 -20	• •	•••••			-
30 25 20 15 10 5 0	776777		77776	Reject Inul		Centered	5 -0 -5 -10 -15 -20 -25 -20	•	-0.5 0.0	0.5 1/2	0 1.5	2.0

001-771-848-3

Analyst: M QA:

С	lient:		Co	ndor Eart	h - Stockt	011	Material: SC-1R		Т	est Date	11/30/18								
Proj	ect #:	29	659		Test ID:	809	964	Random	nization:			10.5	7			Contro	l Water:	Modified EPAMH	
	Day	p New	H	D	0.	Cond.	Temp		D		Sur	vival / I	Reprodu	ction			1	SIGN-OFF	
	0	8 mil		0.9		30-2	24 5	$\hat{\mathbf{n}}$	0	0	$\frac{D}{D}$		()	0) D	Date: 11/30/18 New WQ:	Test Init.: M
	1	188	-01	8.1	11	255	615		0	V			0			0		Date: 12/1/1/K New WQ: 5/4	Time:
	2	9:00	4.77	0.0	DIT	100	25.1	0	0	0		0	0	0	D	0		Sol'n Prep: 7= Old WQ: 3573	Time: Ltr
	2	7.70	7 85	7.0	7.8	353	25.2	0	0	0	0	0	0	0	0	0	0	Sol'n Prep: TK Old WQ: TA	Time:1538
ntrol	3	7.94	783	8.8	81	364	25.4	D	0	0	0	3	0	D	0	0	0	Date: (1/3/18 New WQ: PS Sol'n Prep: SV= Old WQ: 222	Counts: NB Time: 408
ter Cc	4	7-81	7.82	8.7	7.9	360	24,0	4	4	4	le	0	5	Ö	3	6	5	Date: 12/4/13 New WQ: TA Sol'n Prep: TF Old WO: TA	Counts: Ug Time: 347
b Wa	5	7.69	792	7,2	7.9	355	254	10	10	10	9	10	9	6	9	9	10	Date: 12/5(18 New WQ: SAT	Counts:
La	6	7.74	7.62	7.3	8.3	371	24.0	0	15	12	14	14	14	16	17	14	17	Date: 12 Celle New WQ: IP	Counts:PB
	7					48.17.187014			.0			0						Date: New WQ:	Counts:
	0																	Sol'n Prep: Old WQ:	Time:
	ð 141 141 1		1+1 1+1 1+1 1+1 1+1																Time:
				6			Total=	14	29	24	29	27	28	22	29	29	33	Mean Neonates/Female = 24	-6
	Day	New	Old	New	Old	$(\mu S/cm)$	1 emp (°C)	Α	В	C	Sur	vival / F E	eproduc F	tion	н	T	T	SAMPLE ID	
	0	7.38		7.2		z75	24.9	()	0	0	0	()	1)	0	()	0	$\hat{\boldsymbol{h}}$	51455	
	1	7.33	7.83	7.1	7.0	.262	24.2	0	0	0	0	0	0	0	0	0	0	51455	
	2	7.40	7.76	6.0	7.3	270	750	0	6	0	0	0	0	0	2	0	~	C113.22	
	3	233	7.86	84	8.1	2.61	281	0	0	0	IJ	<u>ป</u>		4	0	0	0	ENICE	
%	4	7	700	7 9	50	279	240	1	,	7	1	7	1	7		1	E	51435	
100	5	1.20	7.80	1.1	1-8	LIL	D1.0	Q	(5	0	U	0	0	7	4	2	51453	
	5	1.0	1. N	7,0	6.0	a63	24,4	D	5	12	6	17	6	10	12	8	14	51455	
	6	7-32	4.34	6.5	もう	259	24.2	14	0	21	18	8	16	13	22	0	12	51455	
	7																		
	8																		
							Total=	32	Ģ	36	28	29	23	27	38	15	31	Mean Neonates/Female = $26-5$	2

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

Appendix C

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

CETIS Summ	ETIS Summary Report								: 22	Dec-18 11:	18 (p 1 of 1)		
							Test	t Code:	CE_1118	BPP_C1 1	7-7272 -40 73		
Chronic Larval Fi	ish Survival	and Gro	wth Test							Pacif	ic EcoRisk		
Batch ID: 14-	3579-7263	Т	est Type:	Growth-Surv	ival (7d)		Ana	lyst:	Kristin Roberts	on			
Start Date: 30	Nov-18 17:2	5 P	Protocol:	EPA-821-R-0	02-013 (2002)		Dilu	ent:	Not Applicable				
Ending Date: 07	Dec-18 09:3	0 s	Species:	Pimephales	promelas		Brin	ie:	Not Applicable				
Duration: 6d	16h	S	Source:	Aquatox, AR			Age	:	1				
Sample Code	Sample I	D S	Sample Dat	te Rece	ipt Date	Sample Ag	je Clie	nt Name	e Pi	roject			
CE_1118PP_C1	18-1007-2	2923 3	0 Nov-18 1	7:25 30 No	ov-18 17:25	n/a (25.1 °C	C) Con	dor Eartl	h Technologi 29	9659			
1819-SE68-SC-1F	01-2665-4	1881 2	9 Nov-18 1	1:25 29 No	ov-18 15:50	30h (2.1 °C	;)						
Sample Code	Material	Туре		Sample Sou	rce	Sta	ation Locat	ion	Lat/Long				
CE_1118PP_C1	Ambient V	Nater		Condor Earth	n Technologie	s LA	BQA						
1819-SE68-SC-1R	Ambient \	Nater		Condor Earth	n Technologie	s SC	2-1R						
Single Comparise	Ingle Comparison Summary												
Analysis ID En	dpoint		Comp	arison Metho	bd		P-Value	Comp	arison Result				
02-1417-0480 7d	Survival Rat	e	Wilco	kon Rank Sun	n Two-Sample	e Test	0.2368	1819-	SE68-SC-1R pa	issed 7d su	rvival rate		
7d Survival Rate	Summary												
Sample	Code	Count	Mean	95% LC	L 95% UCL	Min	Max	Std E	rr Std Dev	CV%	%Effect		
CE_1118PP_C1	LW	10	1.000	1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%		
1819-SE68-SC-1R		10	0.900	0.749	1.000	0.500	1.000	0.067	0.211	23.42%	10.00%		
7d Survival Rate	Detail												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
CE_1118PP_C1	LW	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000		
1819-SE68-SC-1R		0.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.500	1.000		
7d Survival Rate Binomials													
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10		
CE_1118PP_C1	LW	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2		
1819-SE68-SC-1R		1/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	1/2	2/2		

Analyst: TR QA: HEF

17/23

.

CETIS Summary Report

							1050	coue.	CE_IIIOF		1-3090-6217
Chronic Larval Fis	h Survival	and Grov	wth Test							Pacif	ic EcoRisk
Batch ID: 07-5	319-5336	Те	est Type: Gro	wth-Surviva	l (7d)		Ana	lyst: Kr	istin Robertso	on	
Start Date: 30 N	lov-18 17:28	5 Pr	rotocol: EP	A-821-R-02-	013 (2002)		Dilu	ent: No	t Applicable		
Ending Date: 07 D	ec-18 09:30) Sp	pecies: Pin	nephales pro	melas		Brin	e: No	t Applicable		
Duration: 6d	16h	Sc	ource: Aqu	uatox, AR			Age	: 1			
Sample Code	Sample II) 5:	ample Date	Receipt	Date	Sample Age	e Clie	nt Name	D,	oject	
CF 1118PP C1w	01-7885-7	436 30) Nov-18 17:2	5 30 Nov-	18 17.25	n/a (25.1 °C		dor Farth T	echnologi 20	650	
1819-SE68-SC-1R	01-2665-4		Nov-18 11:20	5 29 Nov-	18 15:50	30h (2 1 °C)	, 001		eennologi 23	/033	
	01-2000-4		-	231100-	10 10.00	5011 (2.1 0)					
Sample Code	Material T	ype	Sar	mple Source	e	Sta	tion Locat	ion	Lat/Long		
CE_1118PP_C1w	Ambient V	Vater	Cor	ndor Earth T	echnologies	s LAE	BQA				
1819-SE68-SC-1R	Ambient V	Vater	Cor	ndor Earth T	echnologies	s SC-	1R				
Single Compariso	n Summary										
Analysis ID End	point		Comparis	on Method			P-Value	Compar	ison Result		
09-2428-2792 Mea	n Dry Bioma	ass-mg	Equal Var	iance t Two-	Sample Tes	st	0.5666	1819-SE	68-SC-1R pa	ssed mean	drv biomas
07-3653-7963 Mea	n Dry Weigh	nt-mg	Equal Var	iance t Two-	Sample Tes	st	0.9772	1819-SE	68-SC-1R pa	ssed mean	drv weight-
Mean Dry Biomass	s-mg Summ	ary									, ,
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE 1118PP C1w	LW	5	0.413	0.369	0.458	0.368	0.465	0.0159	0.0355	8.58%	0.00%
1819-SE68-SC-1R		5	0.419	0.343	0.495	0.36	0.51	0.0275	0.0615	14.67%	-1.33%
Mean Dry Weight-r	ng Summa	ry									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_1118PP_C1w	LW	5	0.413	0.369	0.458	0.368	0.465	0.0159	0.0355	8.58%	0.00%
1819-SE68-SC-1R		5	0.467	0.422	0.513	0.42	0.51	0.0163	0.0365	7.82%	-13.02%
Mean Dry Biomass	-mg Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
CE_1118PP_C1w	LW	0.412	0.423	0.4	0.465	0.368					
1819-SE68-SC-1R		0.36	0.51	0.42	0.44	0.365					
Mean Dry Weight-r	ng Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
CE_1118PP_C1w	LW	0.412	0.423	0.4	0.465	0.368					
1819-SE68-SC-1R		0.48	0.51	0.42	0.44	0.487					

CETIS Analytical Report							Repo	ort Date:	22	Dec-18 11:1	18 (p 1 of 1)
								Code:	CE_1118	3PP_C1 17	7-7272-4073
Chronic Larval Fis	sh Surviva	al and Growt	th Test							Pacif	ic EcoRisk
Analysis ID: 02-	1417-0480) End	dpoint: 7d	Survival Rat	te		CET	S Version:	: CETISv1	.9.2	
Analyzed: 22	Dec-18 11	:14 Ana	alysis: No	nparametric	-Two Samp	le	Offic	ial Results	s: Yes		
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Angular (Corrected))	C > T					1819-SE6	8-SC-1R p	assed 7d su	rvival rate	19.66%
Wilcoxon Rank Su	im Two-Sa	ample Test									
Sample I vs	Sample	11	Test Stat	Critical	Ties D	F P-Type	P-Value	Decision	(α:5%)		
Lab Water Control	1819-SE	68-SC-1R	95	n/a	1 18	B Exact	0.2368	Non-Sign	ificant Effec	t	
ANOVA Table											
Source	Sum Sq	uares	Mean Squ	uare	DF	F Stat	P-Value	Decision	(α:5%)		
Between	0.03596	05	0.035960	5	1	2.25	0.1510	Non-Sign	ificant Effec	t	
Error	0.287684	4	0.0159824	4	18						
Total	0.323644	4			19						
Distributional Test	ts										
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Variance	e Ratio F Tes	t		6.75E+13	6.54	<1.0E-37	Unequal	Variances		
Distribution	Shapiro-	Wilk W Norm	nality Test		0.604	0.866	3.2E-06	Non-Norn	nal Distributi	ion	
7d Survival Rate S	ummary										
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1118PP_C1	LW	10	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
1819-SE68-SC-1R		10	0.900	0.749	1.000	1.000	0.500	1.000	0.067	23.42%	10.00%
Angular (Corrected	d) Transfo	ormed Sumn	nary								
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Мах	Std Err	CV%	%Effect
CE_1118PP_C1	LW	10	1.21	1.21	1.21	1.21	1.21	1.21	0	0.00%	0.00%
1819-SE68-SC-1R		10	1.12	0.997	1.25	1.21	0.785	1.21	0.0565	15.90%	7.01%
Graphics											
1.0			7777			0.15					
0.9			1111			0.10					
0,9	٠									0.0	b ()
0.8			÷			0.05		5 1			
0.7					1	0.00	• - • -				
au 0.6					į	-0.05					
in os						-0.10					
Sturviv						-0.15					
R 0.4											
0.3						-0.20					
0.2						-0.25					
0.1						-0.30					
0.5						-0.35	•		0.5		_
0.0	CE_1118PP_C1		1819-SE68-	5C-1R		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.	u 1.5	2.3

Analyst: MA QA: Her

CETIS Analyti	cal Repo	ort			Repo Test	ort Date: Code:	22 CE_1118F	Dec-18 11:4 PP_C1w 2	43 (p 1 of 2) 1-3090-6217		
Chronic Larval Fis	h Survival	and Growth	n Test							Pacif	ic EcoRisk
Analysis ID: 09- Analyzed: 22	2428-2792 Dec-18 11:4	End 0 Anal	point: Mea I ysis: Par	an Dry Biom ametric-Two	ass-mg Sample		CETI Offic	S Version: ial Results	CETISv : Yes	1.9.2	
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Untransformed		C > T					1819-SE6	8-SC-1R pa	issed mean	dry biomas	s 14.28%
Equal Variance t T	wo-Sample	Test									
Sample I vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision	(α:5%)		
Lab Water Control	1819-SE68	8-SC-1R	-0.173	1.86	0.059 8	CDF	0.5666	Non-Signi	ficant Effec	t	
ANOVA Table											
Source	Sum Squa	ares	Mean Squ	are	DF	F Stat	P-Value	Decision	(α:5%)		
Between	7.565E-05		7.565E-05		1	0.03	0.8667	Non-Signi	ficant Effec	t	
Error	0.0201527		0.0025191		8						
lotai	0.0202284				9						
Distributional Test	S										
Attribute	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Variances	Variance F	Ratio F Test			3	23.2	0.3118	Equal Var	iances		
Distribution	Shapiro-W	ilk W Norma	ality Test		0.945	0.741	0.6047	Normal Di	stribution		
Mean Dry Biomass	-mg Summ	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1118PP_C1w	LW	5	0.413	0.369	0.458	0.412	0.368	0.465	0.0159	8.58%	0.00%
1819-SE68-SC-1R		5	0.419	0.343	0.495	0.42	0.36	0.51	0.0275	14.67%	-1.33%
Graphics											
0.5						0.100					
						0.075					
0.5											
	•				Ţ	0.050			2		
0.4					entere						
ŝ				Reject Null		5 0.025			2°•		
						0.000					
Mean								•			
. 0.2						-0.025					
0.1						-0.050		•			
0.0						-0.075	<u> </u>				
Ų.u	CE_1118PP_C1w		1819-SE68-\$0	-1R		-2.0	-1.5 -1.0	-0.5 0.0 Ranki×s	0.5 1.	0 1.5	2.0

Analyst: M QA: Jog

001-771-848-3

CETIS Analyti	cal Repo			Repo Test	ort Date: Code:	22 CE_1118F	Dec-18 11: PP_C1w 2	43 (p 2 of 2) (1-3090-6217			
Chronic Larval Fis	h Survival a	and Growt	n Test							Paci	fic EcoRisk
Analysis ID: 07- Analyzed: 22	3653-7963 Dec-18 11:4	End 2 Ana	point: Me Iysis: Par	an Dry Weig ametric-Two	iht-mg o Sample		CET	S Version	: CETISv s: Yes	1.9.2	
Data Transform		Alt Hyp					Comparis	on Result			PMSD
Untransformed		C > T					1819-SE6	8-SC-1R p	assed mean	dry weight	- 10.24%
Equal Variance t T	wo-Sample	Test									
Sample I vs	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decisior	(α:5%)		
Lab Water Control	1819-SE68	3-SC-1R	-2.36	1.86	0.042 8	CDF	0.9772	Non-Sigr	ificant Effec	t	
ANOVA Table											
Source	Sum Squa	ires	Mean Squ	lare	DF	F Stat	P-Value	Decision	ı(α:5%)		
Between	0.0072453		0.0072453	•	1	5.59	0.0457	Significal	nt Effect		
Error	0.0103744		0.0012968		8						
Total	0.0176197				9						
Distributional Test	S				-						
Attribute	Test				Test Stat	Critical	P-Value	Decision	(α:1%)		
Variances	Variance R	atio F Test			1.06	23.2	0.9552	Equal Va	riances		
Distribution	Shapiro-Wi	ilk W Norm	ality Test		0.954	0.741	0.7162	Normal D	istribution		
Mean Dry Weight-r	ng Summar	у									
Sample	Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_1118PP_C1w	LW	5	0.413	0.369	0.458	0.412	0.368	0.465	0.0159	8.58%	0.00%
1819-SE68-SC-1R		5	0.467	0.422	0.513	0.48	0.42	0.51	0.0163	7.82%	-13.02%
Graphics											
0.6						0.05					
						0.05		1			
0.5			11111	77		0.04				/	
						0.03					
0.4	•				ered	0.02					
t-mg				Reject Null	Cent	0.01		i.	• •		
E0 Mei					:	5 0.00		1000	(-
h Dry						-0.01					
W 0.2						-0.02					
						-0.03		•			
0.1						-0.04					
						-0.05	• •				
0.0						-0.06	4				3.
	CE_1118PP_C1w		1819-SE68-S	C-1R		-2.0	-1.5 -1.0	-0.5 0.0 Rankits	0.5 1.	0 1.5	2.0

Analyst: KR QA: JPF

5

	Client:		Condor 1	Earth - S	tockton		Orgai	nism I	_og#:	113	15	Age:		~	48	thr	_
	Test Material			SC-1R			Organisr	n Sup	plier:			A	1.40	1+2	X		
	Test ID#:	809	965	Project #:	296	559	Contr	ol/Dil	luent:				EPA	MH			
	Test Date:		1	1-30-	18		Control W	ater B	atch:				2	122	/		
	T D D A VE GED!	_							,								
_			pl	H	D.O. (mg/L)	Conductivity				# L	ive Oı	rganis	ms			
Tı	reatment (%)	Temp (°C)	New	Old	New	Old	(µS/cm)	А	В	C	D	Е	F	G	Н	Ι	J
	Control	25.1	8.47		7.3		300	2	2	2	2	2	2	2	2	2	2
	100	25.2	7.47		5.3		269	2	2	2	2	2	2	2	2	2	2
Day (Meter ID	93A	PHZY		RDil		ECII										
	Date:	Sample ID:	Test Solut	ion Prep:	New WQ:						Initiat	ion Tin	ie:	Initiat	ion Sig	n-off:	
	11/30/18	51455		ił	TA	٢			_		17	25			\$B		
	Control	26.0	8-06	7.34	8.6	4.0	305	2	2	2	2	Z	2	Z	2	Z	2
-	100	26.0	7-17	7.32	6-6	4.1	276	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	934	PH24	PHZY	RDIO	RD13	EC10										
	Date:	Sample ID:	Test Solut	ion Prep:)	New WQ:	Old WQ:				********	Renewa	34 34		Renewo	al Sign	- <i>ell:</i> 1	******
H	Control	7.5.7	8.10	5 7.70	8.9	1.9	neizjehr 310	7	2	7.	Z	Z	Z	Z	Z	7	Z
	100	25.8	7.22	7.59	7.1	59	276	2	2	2	2	Z	Z	2	2	2	Z
Day	Meter ID	TIONA	PHQH	PHIA	RDIO	RDIZ	ECIO										
	Date:	Sample ID:	Test Solut	ion Prep:	New WQ:	Old WQ:					Renew	al Time		Renewo	al Sign	off:	
Ц	12 2 112	51455	K6		TP	K6		<u> </u>			113	0		1	K		
	Control	25.6	8.17	7.82	87	7.0	313	2	2	2	2	2	2	2	2	2	2
y 3	100	25.5	7.25	1.19	6.9	7.1	265	2	2	2	2	2	2	Z	2	2	ک
Da	Meter ID	814	PH24	PH2S	RDI	ROIL	ECI				Panaw	al Timo		Panau	al Sion	off	
	Date:	SI455	Ka	ion rrep:	MHL	Kr					140	0		T	K	·····	
П	Control	24.9	8.10	8.00	8-8	7.7	323	2	2	2	2	2	2	2	2	2	2
4	100	25.1	7.14	7.77	6.7	7.5	266	2	2	2	2	2	2	2	2	2	2
Day	Meter ID	100A	PHZY	PH25	RDID	RDII	ECIO										
	Date:	Sample ID:	Test Solut	ion Prep:	New WQ:	Old WQ:					Renew	al Time		Renew	al Sign	off:	
Ц	12/4/18	51455	6	t	TA	TA			-	1	155	~			-0		$ \dashv$
	Control	15.8	8.04	7.55	8.1	5.0	318	2	2	2	2	6	2	2	L	2	2
y 5	100	260	7.18	7.51	7.4	5-5	254	1 1 1 1 1 1 1		2		2	2		2	<u>ا</u> 17979	2
Da	Meter ID	107A	pH-24	Pitig	14DIS	CP10	2013				Ranau	al Time		Ronow	al Sian	off:	
	Date: DVG18	5445	- Test Solut	ton trep: Z	SAT	M				14	37	1 1 1 11110		1011011	146		
	Control	25.3	8.07	7.13	8.4	61	300	2	2	2	2	2	2	2	2	2	2
9	100	25.7	7:16	7.03	7.7	6.6	268	1	2	2	2	2	2	2	2	1	2
Day	Meter ID	108A	0119	PHZY	RQ3	ROID	Ec13										
	Date:	Sample ID:	Test Solut	ion Prep:	New WQ:	old WQ:			********	(A FE	Renew	al Time		Renew	al Sign	off:	
\vdash	Control	51955		1111		43	300	1	2	1111	7	7	7	7	2	7	7
	100	262		1:13		47	271	N	7	7.	2	2	2	2	2		2
ay 7	Meter ID	81A		OHIS		RDIS	ECIS				5		-				
	Date;	0117				Old WQ:		*********		**********	Termin	ation	Time:	Termin	ation	ign-of	j:
	12/7/18			KM				60	130				<u> </u>				

7 Day Chronic Fathead Minnow Toxicity Test Data

Client:	Condor Eart	Stockton	Tes	st ID #:	809	965	Project #:	29659	
Sample:	SC	-1R	Tare	e Weig	ght Date:	12- 4	1-18	Sign-off:	AR
Test Date:	11/30	118	Final	l Weig	ght Date:	12 - 8	3 18	Sign-off:	AR
		Š						~	
Pan	Concentration		Initial Pan Weig	ght	Final Pan	Weight	Initial # o	of Organisms	Biomass Value (mg)
	Rep	licate	(mg)		(mg	<u>;)</u>			
1	Control A	+B	408.87		410.	52	L.(0.4125
2	C	+D	410.37		412.	06	Ч		0.4225
3	E	+F	397.49		399.	09	ų		0.4000
4	G	+H	410.60		412.	46	u		0.4650
5	I-	-J	413.20		414.	67	Ч		0.3675
6	100% A	+B	406.02		407.	46	U		0.3600
7	C	+D	415.31		417.	35	L	۱	0.5100
8	E	+F	411. 44		413.	12	L	l	0.42.00
9	G	+H	408.65		410.	41	L	1	0.4400
10	I-	⊦J	404.13	3	405	.59	(4	0.3650
QA 1			403.05		403.	02			~0.03
QA2			405.12		405	07			-0.05
Balance ID			BAL 04		BALO	1			

Fathead Minnow Dry Weight Data Sheet

Water Column Toxicity Lab Report June 19, 2019 at SC-1R Dry Weather Event

Micheline Kipf Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206 July 11, 2019

Micheline:

I have enclosed our report "An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample" for testing performed on the ambient water sample collected on June 19, 2019. The results of this testing are summarized below:

Toxicity summary for the Stockton Stormwater Program ambient water sample.										
	Toxicit	y relative to the l	Lab Control treat	ment?						
Sample ID	Ceriodapi	hnia dubia	Fathead N	<i>A</i> innow						
	Survival	Reproduction	Survival	Growth						
SC-1R	no	YES	no	no						

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There was no significant reduction in survival in the SC-1R sample. There was a significant reduction in reproduction in the SC-1R sample.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in survival or growth in the SC-1R sample.

If you have any questions regarding the performance and interpretation of these tests, please contact my colleague Stephen Clark or myself at (707) 207-7760.

Sincerely,

Michael McElroy Senior Project Manager

Pacific EcoRisk is accredited in accordance with NELAP (ORELAP ID 4043). Pacific EcoRisk certifies that the test results reported herein conform to the most current NELAP requirements for parameters for which accreditation is required and available. Any exceptions to NELAP requirements are noted, where applicable, in the body of the report. This report shall not be reproduced, except in full, without the written consent of Pacific EcoRisk. This testing was performed under Lab Order 28974.

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected June 19, 2019

Prepared For

Condor Earth Technologies, Inc. 188 Frank West Circle, Suite I Stockton, CA 95206

Prepared By

Pacific EcoRisk 2250 Cordelia Rd. Fairfield, CA 94534 (707) 207-7760

July 2019

An Evaluation of the Chronic Toxicity of the City of Stockton Stormwater Program Ambient Water Sample

Sample collected June 19, 2019

Table of Contents

	Page
1. INTRODUCTION	1
2. CHRONIC TOXICITY TEST PROCEDURES	1
2.1 Sample Receipt and Handling	1
2.2 Chronic Toxicity Testing with Ceriodaphnia dubia	1
2.3 Chronic Toxicity Testing with Larval Fathead Minnows	2
3. RESULTS	4
3.1 Chronic Toxicity of Ambient Water on Ceriodaphnia dubia	4
3.2 Chronic Toxicity of Ambient Water on Fathead Minnows	4
4. SUMMARY AND CONCLUSIONS	5
4.1 QA/QC Summary	5

Appendices

Appendix A	Chain-of-Custody Record for the Collection and Delivery of the Sample
Appendix B	Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to <i>Ceriodaphnia dubia</i>

Appendix C Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

i

1. INTRODUCTION

Condor Earth Technologies, Inc., has contracted Pacific EcoRisk (PER) to evaluate the chronic toxicity of an ambient water sample. This evaluation consisted of performing the following US EPA freshwater chronic toxicity tests:

- 3-brood survival and reproduction test with Ceriodaphnia dubia; and
- 7-day survival and growth test with larval fathead minnows (Pimephales promelas).

The current evaluation was performed using an ambient water sample collected on June 19, 2019 and designated SC-1R. This report describes the performance and results of these tests.

2. CHRONIC TOXICITY TEST PROCEDURES

This testing followed the guidelines established by the EPA manual "Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition" (EPA-821-R-02-013).

2.1 Sample Receipt and Handling

On June 19, an ambient water sample was collected into appropriately cleaned sample containers. The sample was transported and delivered on ice and under chain-of-custody to the PER laboratory in Fairfield, CA. Upon receipt at the laboratory, aliquots of the sample were collected for analysis of initial water quality characteristics (Table 1). The sample was then stored at $\leq 6^{\circ}$ C, except when being used to prepare test solutions. The chain-of-custody record for the collection and delivery of this sample is presented in Appendix A.

Table 1. Initial water quality characteristics of the sample.											
Sample Receipt Date	Sample ID	Temp. (°C)	рН	D.O. (mg/L)	Alkalinity (mg/L)	Hardness (mg/L)	Conductivity (µS/cm)	Total Ammonia (mg/L N)			
6/20/19	SC-1R	5.2	8.06	7.7	70	63	215	<1.0			

2.2 Chronic Toxicity Testing with *Ceriodaphnia dubia*

The chronic toxicity test with *C. dubia* consists of exposing neonate organisms to the ambient water for the length of time it takes for the Control treatment females to produce three broods (typically 6-8 days), after which effects on survival and reproduction are evaluated. The specific procedures used in this testing are described below.

The Lab Water Control medium for this testing consisted of a moderately hard synthetic reconstituted freshwater, prepared by addition of reagent grade chemicals to Type 1 lab water.

The ambient water sample was tested at the 100% concentration only. For each test treatment, a 200 mL aliquot of test solution was amended with the alga *S. capricornutum* and Yeast-Cerophyll[®]-Trout Food (YCT) to provide food for the test organisms. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these food-amended test solutions prior to use in this testing.

There were 10 replicates for each test treatment, each replicate consisting of 15 mL of test solution in a 30-mL plastic cup. The tests were initiated by allocating one neonate (<24 hours old, and within 8-hours of age) *C. dubia*, obtained from in-house laboratory cultures, into each replicate cup. The test replicate cups were placed into a temperature-controlled room at 25°C, under cool white fluorescent lighting on a 16L:8D photoperiod.

Each day of the test, fresh test solutions were prepared and characterized as before, and a new set of replicate cups were prepared. The test replicates containing the test organisms were examined, with surviving organisms being transferred to the corresponding new replicate cup. The contents of each of the remaining old replicate cups was carefully examined and the number of neonate offspring produced by each parent organism was determined, after which the "old" water quality characteristics (pH, D.O., and conductivity) were measured for the old test solution from one randomly-selected replicate at each treatment.

After it was determined that $\geq 60\%$ of the *C. dubia* in the Lab Water Control treatment had produced their third brood of offspring, the tests were terminated. The resulting survival and reproduction data were analyzed to evaluate any impairment caused by the ambient water. All statistical analyses were performed using CETIS[®] (TidePool Scientific Software, McKinleyville, CA).

2.3 Chronic Toxicity Testing with Larval Fathead Minnows

The chronic toxicity test with fathead minnows consists of exposing larval fish to the ambient water for seven days, after which effects on survival and growth are evaluated. The specific procedures used in this testing are described below.

Pathogen-related mortality (PRM) in chronic fathead minnow toxicity tests of ambient or ponded waters is a common confounding problem that must be controlled in order to determine the toxicity of sample waters. The US EPA has recognized this problem, and has recommended a variety of potential modifications to the testing approach that can be implemented to minimize PRM interference. The approach used in this study, described below, has the advantage of minimizing the PRM interference without affecting the water sample matrix.

The larval fathead minnows used in this testing were obtained from a commercial supplier (Aquatox, Hot Springs, AR). Upon receipt at the lab, the fish were held in aerated tanks containing Lab Water Control medium, and were fed brine shrimp nauplii *ad libitum* during this pre-test holding period.

The Lab Water Control medium for this testing consisted of EPA moderately-hard synthetic freshwater. The ambient water sample was tested at the 100% concentration only. "New" water quality characteristics (pH, D.O., and conductivity) were measured on these test solutions prior to use in the tests.

There were 10 replicates for each test treatment, each replicate consisting of 20 mL of test solution in a 30-mL test replicate container. The tests were initiated by randomly allocating two larval fathead minnows (<48 hours old) into each replicate. The replicate containers were then placed in a temperature-controlled room at 25°C, under fluorescent lighting on a 16L:8D photoperiod. The test fish were fed brine shrimp nauplii twice daily.

Each day of the tests, fresh test solutions were prepared and characterized as before. The test replicate containers were examined, with any dead animals, uneaten food, wastes, and other detritus being removed. The number of live fish in each replicate was determined and then approximately 80% of the old test solution in each beaker was carefully poured out and replaced with fresh test solution. "Old" water quality characteristics (pH, D.O., and conductivity) were measured on the old test solution that had been discarded from one randomly-selected replicate at each treatment.

After seven days exposure, the tests were terminated and the number of live fish in each replicate was recorded. The fish from each replicate were carefully euthanized in methanol, rinsed in deionized water, and transferred to a pre-dried and pre-tared weighing pan. Replicates were paired to obtain five composite replicates for each test treatment. The fish were then dried at 100°C for \geq 24 hours and re-weighed to determine the total dry weight of fish in each replicate. The total dry weight was then divided by the initial number of fish per composited replicate to determine the "biomass value." The resulting survival and biomass value data were analyzed to evaluate any impairments caused by the ambient waters. All statistical analyses were performed using CETIS.

3. RESULTS

3.1 Chronic Toxicity of Ambient Water on Ceriodaphnia dubia

The results of this testing are summarized in Table 2. There was no significant reduction in survival in the SC-1R sample. There was a significant reduction in reproduction in the SC-1R sample. The test data and summary of statistical analyses are presented in Appendix B.

Table 2. Chronic toxicity of ambient water on Ceriodaphnia dubia.										
Treatment/Sample ID	Mean % Survival	Mean Reproduction (# neonates/female)								
Lab Water Control	100	38.9								
SC-1R	90	21.9*								

* The response at this test treatment was significantly less than the Lab Water Control treatment response (p < 0.05).

3.2 Chronic Toxicity of Ambient Water on Fathead Minnows

The results of this testing are summarized in Table 3. There were no significant reductions in survival or growth in the SC-1R sample. The test data and summary of statistical analyses for this testing are presented in Appendix C.

Table 3. Chronic toxicity of ambient water on fathead minnows.									
Treatment/Sample ID Mean % Survival Mean Biomass V (mg)									
Lab Water Control	100	0.36							
SC-1R	100	0.39							

7/23

4. SUMMARY AND CONCLUSIONS

Chronic Toxicity of Urban Ambient Waters to Ceriodaphnia dubia

There was no significant reduction in survival in the SC-1R sample. There was a significant reduction in reproduction in the SC-1R sample.

Chronic Toxicity of Urban Ambient Waters to Fathead Minnows

There were no significant reductions in survival or growth in the SC-1R sample.

4.1 QA/QC Summary

Test Conditions – All test conditions (pH, D.O., temperature, etc.) were within acceptable limits. All test analyses were performed according to laboratory Standard Operating Procedures.

Negative Control –The biological responses at the Lab Control treatments were within acceptable limits.

8/23

Appendix A

Chain-of-Custody Record for the Collection and Delivery of the Sample

										Condor Earth Technologies, J						s. Inc.			
Sampl	e Result	s TAT: 🗌 Rush 🔽	Standard				×			O Box 3905	/21663 Briz	in Lane	188 Stor	Frank West	t Circle, Suit	e ^I Γ	2941 Sunrise Blvd, Suite Rancho, Cordova, CA 99	150 1739 1739 Men	Ashby Road, Suite B
SHIP	PED TO	<u>):</u>				CC	ND	OR	20	09.532.0361 09.532.0773	fax	L	209 209	.234.0518 .234.0538 f	àx	L	916.783.2464 fax	209. 209.	388.9601 388.1778 fax
Pacif	ic EcoR	lisk								<u>SEND</u>	RESU	LTS TO	<u>0:</u>	Miche	eline D	ovle k	Kinf		
2250 Cordelia Road									NAI E _n M			mkipf	@cond	dorea	rth.com		S		
Fairfi	eld, CA	94534 (707) 207-7	7760								E-M	IAIL:							
												V	PLE	ASE F.	AX/EM	IAILF	RESULTS TO AD	DRESS MAI	RKED ABOVE
РКОЛ	ECTNA	ME/LOCATION: CO	OS Urban Disch	narg	e	EDF RE	SULT	S RE	QUIR	ED	YES 🔽	NO			SITI	E GLC	BAL ID:		
PROJ	ECT NO	^{.:} 6066J-06-01							nia	Mou									
SAMF	LED BY	I: (Signature) Rebec	ice fox			10		-73	daph	d min									
		0		ix.	iners	ative. low)	(SIS OD:	Itere	Cerio	athea									
			Samula ID	Math	conte	serv; se be	IAL) ETH	ld Fi	onic (nic fi									
Date	Time	Sample Site Name	(if different)		# of	Pre (se	A M	Fie	Chre	Chro							REMARKS		LAB ID#
6/19/19	0905	1819-DW38	SC-1R	S	2	1		N	\checkmark	\checkmark							chronic Ceriodaphnia dubia toxicity		
																	chrionic flathead m	ninnow toxicity	
			1														follow up dilutio	on series as	
									necessary (100% mortali				nortality/24hrs)						
Relinquished By: (Signature) Date:						Time:	230		Receiv	ved By: (Signature	nappilla Date/				Time: 1230			
Relinquished By (Signature)							Receiv	ved By: (Signature)	Santer Thinks 6120119 141					1 1405			
Matrix DW Dri	nking Water	WW Waste Water	Hazardous Waste (Wa	ter)	6	Soil/Solid	sw	St	orm Wat	ter	W Gro	und Water	Pro	servativ	e V 2 HCL	3 Na	aOH 🕢 Na2S2O3 🚺	HNO ₃ 6	H2SO4 (7) Other
Original – Send							Yellow-File					Pink – Log Book							

Appendix B

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to *Ceriodaphnia dubia*

CETIS Summary Report

Report Date:

07 Jul-19 10:25 (p 1 of 1) Test Code/ID: CE_0620CD_C1 / 14-9449-5951

Ceriodaphnia Surv	vival and Re	productio	n Test								 Pacif	ic EcoRisk
Batch ID: 21-1035-7356 Test T Start Date: 20 Jun-19 14:59 Protoc Ending Date: 27 Jun-19 10:17 Speci Test Length: 6d 19h Taxon			t Type: Rep tocol: EP/ ecies: Cer on: Bra	1	A E S	Analyst: James Lem Diluent: Not Applicable Brine: Not Applicable Source: In-House Culture		e	Age: 1			
Sample Code	Sample ID	San	nple Date	Receipt	t Date	Sample Age	ə (lient Nam	ne	Pr	oject	
CE_0620CD_C1	07-3522-36	641 20	Jun-19 14:59	20 Jun-	19 14:59	n/a (25.2 °C) (Condor Ear	rth Teo	chnologi 28	974	
1819-DW38-SC-1R	16-3834-89	904 19.	Jun-19 09:05	20 Jun-	19 14:05	30h (5.2 °C)						
Sample Code	Material T	уре	Sar	nple Source	e	Sta	tion Lo	cation		Lat/Long		
CE_0620CD_C1	Lab Water	_	Sto	ckton Storm	water	LAE	BQA					
1819-DW38-SC-1R	Ambient W	later	Sto	ckton Storm	water	SC-	1R					
SIngle Compariso	n Summary											
Analysis ID End	point		Comparis	on Method			P-Val	ue Com	paris	on Result		S
13-5992-8114 Repr	roduction		Equal Vari	ance t Two-	Sample Te	st	2.3E-0	04 1819	9-DW3	88-SC-1R fa	iled reprod	uction 1
13-4855-2638 Surv	ival		Fisher Exa	ict Test			0.5000	0 1819	9-DW3	38-SC-1R p	assed survi	val 1
Test Acceptability						TAC Li	mits					
Analysis ID End	point		Attribute		Test Stat	Lower	Upper	· Ove	rlap	Decision		
13-5992-8114 Repr	roduction		Control Re	sp	38.9	15	>>	Yes		Passes C	riteria	
13-5992-8114 Repr	oduction		PMSD		0.177	0.13	0.47	Yes		Passes C	riteria	
Reproduction Sum	mary											
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std I	Err	Std Dev	CV%	%Effect
CE_0620CD_C1	LW	10	38.9	35.2	42.6	27	46	1.66		5.24	13.46%	0.00%
1819-DW38-SC-1R		10	21.9	13.7	30.1	0	37	3.62		11.4	52.22%	43.70%
Survival Summary												
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Мах	Std I	Err	Std Dev	CV%	%Effect
CE_0620CD_C1	LW	10	1.000	1.000	1.000	1.000	1.000	0.00	0	0.000	0.00%	0.00%
1819-DW38-SC-1R		10	0.900	0.674	1.000	0.000	1.000	0.10	0	0.316	35.14%	10.00%
Reproduction Deta	il											
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep	7	Rep 8	Rep 9	Rep 10
CE_0620CD_C1	LW	46	42	39	34	42	40	39		42	27	38
1819-DW38-SC-1R		24	17	7	37	27	32	20		31	24	0
Survival Detail												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep	7	Rep 8	Rep 9	Rep 10
CE_0620CD_C1	LW	1.000	1.000	1.000	1.000	1.000	1.000	1.000	C	1.000	1.000	1.000
1819-DW38-SC-1R		1.000	1.000	1.000	1.000	1.000	1.000	1.000	D	1.000	1.000	0.000
Survival Binomials												
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	Rep 6	Rep	7	Rep 8	Rep 9	Rep 10
CE_0620CD_C1	LW	1/1	1/1	1/1	1/1	1/1	1/1	1/1		1/1	1/1	1/1
1819-DW38-SC-1R		1/1	1/1	1/1	1/1	1/1	1/1	1/1		1/1	1/1	0/1

Analyst: JL QA: Me

CETIS Ana	alvtio	cal Rep	ort					Report Date:	07 Jul-1	19 10:24 (p 1 of 1)
1		· 4·						Test Code/ID:	CE_0620CD_	C1 / 14-9449-5951
Ceriodaphnia	a Surv	ival and F	Reproducti	on Test						Pacific EcoRisk
Analysis ID:	13-4	855-2638	En	dpoint: Su	rvival			CETIS Version:	CETISv1.9.6	
Analyzed:	07 Ji	ul-19 10:23	3 An	alysis: Sir	igle 2x2 Co	ntingency Ta	ble	Status Level:	1	
Fisher Exact	Test									
Sample I	vs	Sample	11	Test Stat	P-Type	P-Value	Decision	(α:5%)		
Lab Water Co	ntrol	1819-DV	V38-SC-1R	0.500	Exact	0.5000	Non-Sign	ificant Effect		
Data Summa	ry									
Sample		Code	NR	R	NR + R	Prop NR	Prop R	%Effect		
CE_0620CD_	C1	LW	10	0	10	1	0	-11.1%		
1819-DW38-S	C-1R		9	1	10	0.9	0.1	0.0%		
Graphics										
1.0		٠								
0.9				٠						
0.8										
0.7										
0.6										
.≥ 0.5										
.4 0.4										
0.3										
0.2										
· 0.1										
0,0										
		CE_0620CD_C1		1819-DW38	I-SC-1R					

Analyst: JL QA:<u>NM</u>

1.12
CETIS Analytical Report								Repo Test	Code/ID;	CE_0620)CD_C1 / 14	4-9449-5951
Ceriodaphnia S	Survival and I	Reproductio	on Test								Pacif	ic EcoRisk
Analysis ID: Analyzed: (13-5992-8114 07 Jul-19 10:23	En 3 An	d point: Rej alysis: Par	production ametric-Two	o Sample	e		CET Stati	S Version: us Level:	CETISv1 1	.9.6	
Data Transform	n	Alt Hyp						Comparis	on Result			PMSD
Untransformed		C > T						1819-DW	38-SC-1R fa	iled reprod	uction	17.73%
Equal Variance	e t Two-Samp	le Test										
Sample I v	s Sample	1	Test Stat	Critical	MSD	DF	P-Type	P-Value	Decision(α:5%)		
Lab Water Cont	troi 1819-DW	/38-SC-1R*	4.27	1.73	6.9	18	CDF	2.3E-04	Significant	tEffect		
ANOVA Table												
Source Sum Squares Mean Square							F Stat	P-Value	Decision(α:5%)		
Between 1445 1445					1		18.3	4.6E-04	Significant	Effect		
Error	1423.8		79.1		18							
Total	2868.8				19							
ANOVA Assum	ptions Tests											
Attribute	Test				Test S	tat	Critical	P-Value	Decision(α:1%)		
Variance	Variance	Ratio F Tes	t		4.77		6.54	0.0293	Equal Vari	ances		
Distribution	Shapiro-\	Wilk W Norn	nality Test		0.936		0.866	0.1984	Normal Di	stribution		
Reproduction S	Summary											
Sample		Count	Mean	95% LCL	95% U	CL	Median	Min	Max	Std Err	CV%	%Effect
	Code	ooune						-		4.00		0.00%
CE_0620CD_C	Code 1 LW	10	38.9	35.2	42.6		39.5	27	46	1.66	13.46%	0.0070
CE_0620CD_C ² 1819-DW38-SC	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24	27 0	46 37	3.62	13.46% 52.22%	43.70%
CE_0620CD_C ² 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24	27 0	46 37	3.62	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24 20 -	27 0	46 37	3.62	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24 ²⁰ 15	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24 20 15 10 -	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics 50 40	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7	42.6 30.1		39.5 24 20 15 10 5	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics 50 40	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	red	20 15 10 5	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Nul	42.6 30.1	Centered	39.5 24 20 15 10 5 0	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	Centered	39.5 24 20 15 10 - 5 5 -5	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics 50 40 30 30 20	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	Centered	39.5 24 20 15 10 - 5 -5 -10	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics 50 40 30 20	Code 1 LW -1R	10 10 -	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	Centered	20 15 10 -5 -10 -15	27 0	46 37	1.66	13.46% 52.22%	43.70%
CE_0620CD_C 1819-DW38-SC Graphics 50 40 40 20 20	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	Centered	39.5 24 20 15 10 -5 -10 -15	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics 50 40 30 30 20 10	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Nul	42.6 30.1	Centered	39.5 24 20 15 10 - 5 -5 -10 -15 -20	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%
CE_0620CD_C ⁻ 1819-DW38-SC Graphics 50 40 30 30 20 10	Code 1 LW -1R	10 10	38.9 21.9	35.2 13.7 Reject Null	42.6 30.1	Centered	39.5 24 20 15 10 - 5 -5 -10 -15 -20 -25	27 0	46 37	1.66 3.62	13.46% 52.22%	43.70%

Analyst: JL QA: pm

This page intentionally left blank for printing purposes

С	lient:		Co	ndor Eart	h: Stockta	n		N	faterial:		3C1	Eff	uent			Т	est Date:	10/20/1	9		
Proje	ect #:	28	974	- :	Test ID:	786	34	- 								Contro	l Water:		Mod EPAMH		
	Day	pH		D.O.	1	Cond.	Temp				Sur	vival / I	Reproduc	ction	-				SIGN-OFF		
		New	Old	New	Old	(µS/cm)	(°C)	A	B	С	D	E	F	G	H	I	J	Duddethe		Text Init · D [3	
	0	7.90		8.3		376	25.2	O	0	0	0	0	0	0	()	\mathcal{O}	0	Sol'n Prep: K	KG	Time: (109	
	1	8 . 7	8.08	88	8.1	358	141	0	0	0	-		0					Date: 6/21/19	New WQ: SR	Counts: 26	
		0.02	0-0	000	0.4	100	1 61		0	0	\cup	\bigcirc	<u> </u>	\odot	\Box	0	0	Sol'n Prep: SmC	Old WQ: NN	Time: 252	
	2	\$,00	801	8.5	8.6	263	14.8	0	0	0	0	0	0	0	0	0	0	Sol'n Prep: A L	New WQ: SHT	Time: (122)	
_	2		0101	0.1	9													Date: 123/19	New WQ: NN	Counts: TK	
ntro	3	8.03	8.28	9.2	0.4	355	24.4	Ø	0	0	0	0	0	0	0	5	0	Sol'n Prep: K6	Old WQ: NN	Time 230	
S	4	2.03	8.09	88	7.9	244	111.7	10	7	7	10	82	10	7	6	0	2	Date: 0/24/19	New WQ	Counts:16	
ater	_	3-0		0.0	1.7	517	64.2				U.		ч	- 1	611		1	Date 10/25/19	New WO: New WO:	Counts: //	
N N	5	7.96	7.96	2.3	7.7	346	24.1	14	15	14	12	IS	13	IS	14	11		Sol'n Prep: Kh	Old WQ U	Time: 1330	
Lal	6	8.00	~ 1 el	8.6	12	2010	14	Δ	0	0	16	19	21	17	n	11	0	Date: 6/26/19	New WQ: MB	Counts:	(Pol
		0.001	1.68		6.5	210	4 6 1	0			10			11				Sol'n Prep: KL	Old WQ: TA	Time: 145	nifly
	7	-	7.80	-	7.5	368	24.2	26	20	18	0	0	0	0	20	Ø	20	Sol'n Prep:	Old WO:	Time: Part	1017
	8																	Date:	Old WQ:	Counts:	
	er der					*****			. 1 .	- (l)		1.1.00		0.0	110		Ł			Time:	
							Total=	46	42	34	34	42	40	31	42	27	38	Mean Neonates/I	Female = 38	-7	
	Day	p	H	D.	.0.	Cond.	aaaaaaa		D	0	Surviva	1 / Repr	oduction			T			SAMPLE ID		
	_	New		INEW	Old	(µ5/cm)		A	В	<u> </u>	D_	E	I I	G	H						
	0	7.72		8.1		213	251	Ö	\mathcal{O}	Ø	0	0	0	0	0	O	D		53246		
	1	7.82	8.10	8.5	2.2	13)	248	(n)	6	0	\sim	-	0	0	G	6	-3		2011		
		1.02	0	0.0	17	220	10.10		0		\square	\bigcirc				0	<u> </u>	3	5240		
	2	7,75	7.99	8,4	7.8	31 Unality	24.8	O	0	0	Ø	0	0	0	0	0	0	53	246		
	3	2 05	8.21	0.2	8.0	0.18	144	0	0	~	~	0		0		~		6	0.11		
	_	+,45	0 -1	7 4	0 -	210	27.2	0		0	0		0	0	0	0	O VI	53	146		
%0(4	8.00	8.13	9.3	8.0	212	24.3	2	2	0	5	4	1		5	0	~/0	53	246		
Ĕ	5	7.86	8.04	8.0	7.6	218	24.2	1	1	Ó	7	4	8	0	3	9	-	53	2410		
	6	8.01	7.79	8.4	6.5	212	242	0	14	7	25	18	22	18	0	15	~	53:	246		
	7		8.03	_	7.8	22 6	24.4	21	0	0	O	1			23	0	-				
	8					V		-				U.	\checkmark	~							
	21.85								1		27	0.7		2 -			V.				
							i otal=	24		1	2/	21	32	20	5	24	16	Mean Neonates/F	emale = 21	9	

Short-Term Chronic 3-Brood Ceriodaphnia dubia Survival & Reproduction Test Data

D=Split brood. included in total. - NL 7/11/19

This page intentionally left blank for printing purposes

Appendix C

Test Data and Summary of Statistics for the Evaluation of the Chronic Toxicity of the Ambient Water Sample to Fathead Minnows

This page intentionally left blank for printing purposes

CETIS Sur	nmary Repo	ort				Repo	ort Date:	30	3 Jul-19 16	23 (p 1 of 1)
						lest	Code/ID):	2897471	6-5747-9186
Chronic Larv	al Fish Survival	and Growth Test							Paci	fic EcoRisk
Batch ID:	17-4500-2864	Test Type	: Growth-Surviv	al (7d)		Anal	yst: .	James Lem		
Start Date:	20 Jun-19 15:15	Protocol:	EPA-821-R-02	2-013 (2002)		Dilu	ent: I	Not Applicable		
Ending Date:	27 Jun-19 08:12	Species:	Pimephales p	romelas		Brin	Brine: Not /			
Test Length:	6d 17h	Taxon:	Actinopterygii			Sou	rce: /	Aquatox, AR		Age: 1
Sample ID:	01-3689-5449	Code:	Ambient Wate	r		Proje	ect: 2	28974		
Sample Date:	: 20 Jun-19 09:05	Material:	Lab Water			Sou	rce: S	Stockton Storm	water	
Receipt Date:	: 20 Jun-19 14:05	CAS (PC):	:			Stati	ion: S	SC-1R		
Sample Age:	6h (5.2 °C)	Client:	Condor Earth	Technologies	6					
Single Compa	arison Summary									
Analysis ID	Endpoint	Com	parison Metho	d		P-Value	Comp	arison Result		s
20-7038-1511	7d Survival Rate	Equa	al Variance t Two	Sample Tes	st	0.5000	100%	passed 7d surv	vival rate	1
Test Acceptal	bility				TACI	imite				
Analysis ID	Endpoint	Attri	bute	Test Stat	Lower	Upper	Overla	n Decision		
20-7038-1511	7d Survival Rate	Cont	rol Resp	1	0.8	>>	Yes	Passes C	riteria	
7d Survival R	ate Summary									
Conc-%	Code	Count Mea	n 95% LCL	. 95% UCL	Min	Max	Std Er	r Std Dev	CV%	%Effect
0	LW	10 1.00	0 1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
100		10 1.00	0 1.000	1.000	1.000	1.000	0.000	0.000	0.00%	0.00%
7d Survival R	ate Detail									
Conc-%	Code	Rep 1 Rep	2 Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	LW	1.000 1.000	0 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
100		1.000 1.000	0 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
7d Survival R	ate Binomials									
Conc-%	Code	Rep 1 Rep	2 Rep 3	Rep 4	Rep 5	Rep 6	Rep 7	Rep 8	Rep 9	Rep 10
0	LW	2/2 2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
100		2/2 2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2

17/23

Analyst: JL QA:

CETIS /	Analyt	ical Rep	ort					Repo Test	ort Date: Code/ID:	08	Jul-19 16: 28974 / 1	21 (p 1 of 1) 6-5747-9186
Chronic L	_arval F	ish Survival	and Growt	th Test							Paci	fic EcoRisk
Analysis Analyzed	ID: 20- : 08	7038-1511 Jul-19 16:21	Enc Ana	dpoint: 7d alysis: Par	Survival Rat ametric-Two	te o Sample		CET Stat	IS Version: us Level:	CETISv1 1	.9.6	
Data Tran	sform		Alt Hyp					Comparis	son Result			PMSD
Angular (C	Corrected	d)	C > T					100% pas	sed 7d surv	ival rate		12.50%
Equal Va	riance t	Two-Sample	e Test									
Control	vs	Conc-%		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision((α:5%)		
Lab Wate	r Contr	100		0	1.73	2E-08 18	CDF	0.5000	Non-Signi	ficant Effect		
ANOVA T	able											
Source		Sum Squ	ares	Mean Squ	lare	DF	F Stat	P-Value	Decision((a:5%)		
Between		0		0		1	0	1.0000	Non-Signi	ficant Effect		
Error		7.105E-1	5	3.947E-16	i	18						
lotal		7.105E-18	5		_	19						
ANOVA A	ssumpt	ions Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variance		Variance	Ratio F Tes	t		1	6.54	1.0000	Equal Var	iances		
7d Surviv	al Rate	Summary										
Conc-%		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LW	10	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
100			10	1.000	1.000	1.000	1.000	1.000	1.000	0.000	0.00%	0.00%
Angular (Correcte	ed) Transfor	med Summ	nary								
Conc-%		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
0		LW	10	1.21	1.21	1.21	1.21	1.21	1.21	0	0.00%	0.00%
100			10	1.21	1.21	1.21	1.21	1.21	1.21	0	0.00%	0.00%
Graphics												
1.0							1.0					
é ú												
0.5		0			Reject Null							
U.8							0.8					
al Ra												
0.6						ered	Angle					
P 0.5						Cent	0.5					
0.4												
0.3												
0.2							0.3					
0.1							-					
0.0							00		المعمما			
0.0		D LW		100			-2.0	-1.5 -1.0	-0.5 0.0	0.5 1.0	1.5	2.0
			Conc-%						Rankits			

Analyst: JL QA:

.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Client:		Condor	Earth - S	tockton		Orga	nism l	Log#:	1165	0	Age:		cy	3hi	r	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Sample:		ŝ		Organism Supplier: Atput To?				tox	×							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Test ID#:	780	535	Project #:	28	974	Cont	rol/Di	- luent:			de	EPA	MH			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Test Date:		1/20/10	1			Control W	vater E	Batch:				21	92			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								-						P				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		(<i>C</i> ())	Tama (°C)	p	H	D.O.	(mg/L)	Conductivity				# L	ive O	rganis	sms			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		reatment (%)	Temp (C)	New	Old	New	Old	(µ\$/cm)	Α	B	C	D	E	F	G	H	Ι	J
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Control	24.5	7.94		3.2		305	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	100	24.9	7.86		79		214	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Day	Meter ID	54	PH24		PDII		EUI										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date:	Sample ID:	Test Solut	ion Prep:	New WQ:						Initiat	ion Tir	ne:	Initia	tion Sig	n-off:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Cantral	53246		10	10	1-				1	215				pe		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Control	25.0	7.82	7.77	8.5	6.5	310	2	2	3	ð	3	3	2	2	a	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	y 1	100	03.	+.76	1.58	8.2	5.8			0-	0	2	2	<u></u>	9	<i>∂</i> -	0-	∇
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	۱ñ	Date:	Sample ID:	Test Solut	ion Pren:	KPII New WO:	Old WO:	ECII	99990			Renew	al Time		Rong	al Sian		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6/21/19	53246	Sm	IC.	-SR	TA		******			114	()		A	742	-9.0	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H	Control	25.8	7.94	7.48	8.7	105	219	a	2	2	2	2	2	Z	2	7	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	100	25.9	7.78	7.47	7.4	62	209	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Day	Meter ID	1050	1424	1424	RDII	2PH	EC II										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date:	Sample ID:	Test Solut	io Prep:	New WQ:	Old WQ:					Renew	al Time		Renew	al Sign	-off:	000000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Gran	53246	RA RA	æ .	SAT	SAT				- 2	1011			R	-6		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Control	25.7	8-00	7.72	8.5	6.8	301	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ŝ	100	25.7	784	7.75	8.9	6.7	211	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Da	Meter ID	54	PH26	PH26	RD12	& PIZ	GLIG										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date:	Sample ID:	Test Solut	ion Prep:	New WQ:	Old WQ:					Renew	al Time		Renew	al Sign	off:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\vdash	Control	2/40	0.02	7.02	2.7	6.9	2 C	1	1	1	2	1	7	7	-	1	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		100	2517	7 95	790	8.8		302	1	2	1	C 7	1	27	1	7	-	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ay 4	Meter ID	YOF	01/26	0476	BOLL	ROU	ELID		<u> </u>							L.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date:	Sample ID:	Test Solut	ion Prep:	New WQ:	Old WQ:					Renew	al Time	: :	Renew	al Sign	-off:	122012
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		624/19	53246	k	40	NN	WC					(140	5		τ	K		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control	25.7	7.87	7.36	6.6	5.0	305	2	2	2	S	2	21	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	100	25.8	7.88	7.48	7.5	5.0	215	2	2	2	2	2	2	2	2	2	2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Day	Meter ID	IOSA	PHZY	PH24	AD13	RD13	CC13										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Date:	Sample ID:	Test Soluti	ion Prep:	New WQ:	Old WQ:					Renew	al Time		Renew	al Sign	-off:	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vdash	Control	7044	C al	7 19	81	IA	2014	CY.	7	7	2	3	-	~	0	2	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100	1751	5.01	1.01	0.1	6.6	304	20	, j	2	2	2	~	2	7	2	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ay 6	Meter ID	L) 1	4.00	1.12 Qual	n	6.D	E(1)						110110			<u>ر</u> الالالالة	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	Date:	Sample ID:	Test Soluti	ion Prep:	New WO:	Old WO:		20000			Renew	al Time		Renew	al Sign	-off:	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		6126/19	53246	KL		ИВ	TK				*******	105	15		1	26		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Control	25.1		7.75		6.8	311	2	2	Z	2	2	2	2	2	2	2
Meter ID 112 A PH 24 RD 11 E C 11 Date: Date: Termination Time: Termination Sign-off:	2	100	25.3		7.77		6.4	222	2	2	2	2	2	2	2	2	z	2
Date: Old WQ: Termination Time: Termination Sign-off:	Day	Meter ID	112 A	****	8424		RDII	ECII										
6/21/20		Date:					Old WQ:					Termin	ation ?	Time:	Termin	ation S	lign-of	<u>f:</u>

7 Day Chronic Fathead Minnow Toxicity Test Data

CETIS Summary Report

Report Date: 08 Jul-19 16:05 (p 1 of 1) Test Code/ID: CE_0620PP_C1_Wt / 05-6628-2349

Chronic Larval Fis	h Survival a	and Grow	wth Test							Pacif	ic EcoRisk
Batch ID: 09-2	449-8133	Т	est Type: 0	Growth-Surviva	ıl (7d)		A	nalyst: Ja	ames Lem		
Start Date: 20 J	un-19 15:15	Р	rotocol: E	PA-821-R-02-	013 (2002)		D	iluent: N	ot Applicable		
Ending Date: 27 J	un-19 08:12	S	pecies: P	imephales pro	omelas		В	rine: N	ot Applicable		
Test Length: 6d 1	17h	Ta	axon: A	ctinopterygii			Source:		Aquatox, AR		Age: 1
Sample Code	Sample ID) S.	ample Date	Receip	t Date	Sample Age	e C	lient Name	Pi	roject	
CE_0620PP_C1	01-0122-5	554 20	0 Jun-19 15:	Jun-19 15:15 20 Jun-19 15:15			a (24.5 °C) Condor E		Fechnologi 28	3974	
1819-DW38-SC-1R	16-3834-89	904 19	9 Jun-19 09:	05 20 Jun-	19 14:05	30h (5.2 °C)					
Sample Code	Material T	уре	s	ample Sourc	Station Location			Lat/Long			
CE_0620PP_C1	Lab Water		S	stockton Storm	water	LAE	BQA				
1819-DW38-SC-1R	Ambient W	/ater	s	tockton Storm	water	SC-	-1R				
Single Compariso	n Summary										
Analysis ID End	point		Compa	rison Method			P-Valu	ie Compa	rison Result		s
06-4714-8070 Mea	n Dry Bioma	ss-mg	Equal V	ariance t Two-	Sample Tes	st	0.7095	1819-D\	W38-SC-1R p	assed mea	n dry biom 1
20-4812-8552 Mea	n Dry Weigh	it-mg	Equal V	ariance t Two-	Sample Tes	st	0.7095	1819-D\	W38-SC-1R p	assed mea	n dry weig 1
Test Acceptability						TAC L	imits				
Analysis ID End	point		Attribut	e	Test Stat	Lower	Upper	Overlap	Decision		
06-4714-8070 Mean	n Dry Bioma	ss-mg	Control	Resp	0.364	0.25	>>	Yes	Passes C	riteria	
06-4714-8070 Mean	n Dry Bioma	ss-mg	PMSD		0.213	0.12 0.3 Ye		Yes	Passes C	riteria	
Mean Dry Biomass	-mg Summ	ary									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0620PP_C1	LW	5	0.364	0.282	0.446	0.258	0.423	0.0296	0.0663	18.21%	0.00%
1819-DW38-SC-1R		5	0.388	0.306	0.47	0.315	0.475	0.0294	0.0657	16.92%	-6.59%
Mean Dry Weight-n	ng Summar	у									
Sample	Code	Count	Mean	95% LCL	95% UCL	Min	Max	Std Err	Std Dev	CV%	%Effect
CE_0620PP_C1	LW	5	0.364	0.282	0.446	0.258	0.423	0.0296	0.0663	18.21%	0.00%
1819-DW38-SC-1R		5	0.388	0.306	0.47	0.315	0.475	0.0294	0.0657	16.92%	-6.59%
Mean Dry Biomass	-mg Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
CE_0620PP_C1	LW	0.423	0.258	0.388	0.408	0.345					
1819-DW38-SC-1R		0.43	0.338	0.382	0.315	0.475					
Mean Dry Weight-n	ng Detail										
Sample	Code	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5					
CE_0620PP_C1	LW	0.423	0.258	0.388	0.408	0.345					
1819-DW38-SC-1R		0.43	0.338	0.382	0.315	0.475					

Analyst: JL QAM

CEIR		laryti	ai nepu						Test	Code/ID: C	E_0620PP_	C1_Wt / 05	6628-2349
Chron	ic La	rval Fis	h Survival a	and Growth	Test							Pacific	c EcoRisk
Analys	is ID	: 06-4	714-8070	End	point: Mea	an Dry Biom	ass-mg		CETI	S Version:	CETISv1	.9.6	
Analyz	ed:	07 J	ul-19 10:35	Anal	ysis: Par	ametric-Two	Sample		Statu	s Level:	1		
Data T	rans	form		Alt Hyp					Comparis	on Result			PMSD
Untran	sforn	ned		C > T					1819-DW3	8-SC-1R pa	assed mean	dry biomas	21.31%
Equal	Varia	ance t T	wo-Sample	Test									
Sampl	el	VS	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision(α:5%)		
Lab W	ater (Control	1819-DW3	8-SC-1R	-0.575	1.86	0.078 8	CDF	0.7095	Non-Signi	ficant Effect		
ANOV	A Tal	ble											
Source	э		Sum Squa	ares	Mean Squ	are	DF	F Stat	P-Value	Decision(α:5%)		
Betwee	en		0.0014397		0.0014397		1	0.331	0.5810	Non-Signi	ficant Effect		
Total			0.0348105		0.0043513		9	-					
ANOV		sumptio	ons Tests										
Attribu	ite	sampus	Test				Test Stat	Critical	P-Value	Decision(α:1%)		
Varian	ce		Variance F	Ratio F Test			1.02	23.2	0.9859	Equal Var	iances		
Distribu	ution		Shapiro-W	ilk W Norm	ality Test		0.963	0.741	0.8169	Normal Di	stribution		
Mean I	Dry E	Biomass	-mg Summ	ary									
Sampl	е		Code	Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
CE_06	20PF	P_C1	LW	5	0.364	0.282	0.446	0.388	0.258	0.423	0.0296	18.21%	0.00%
1819-L	00038	-SC-1R		5	0.388	0.306	0.47	0.382	0.315	0.475	0.0294	16.92%	-6.59%
Graphi	ics												
	0.5							0.10					
								0,08				•	
	0.4]	1.20			0.06			í đ)	
		Z	1/1/1/		7 7 287			0.04			• •		
ğ								0.02					
mass-	0.5					Reject Null	entere	0.00					
ry Bio							ن :	-0.02		•/			
fean D	0.2							-0.04					
2								-0.06					
	0.1							-0,08					
								-0.10					
	0.0		CE 062089 C1		1810 010/20	SC-1R		-0.12 -2.0	-1.5 -1.0	-0.5 0.0	0.5 1.	0 1.5 2	2.0
			0L_0020PP_01		1019-04430-	uu in				Rankits			

.

Report Date: 08 Jul-19 16:03 (p 1 of 2)

001-771-848-3

Analyst: JL QA: M

Chronic La	rval Fis	h Survival a	and Growth	n Test							Pacifi	c EcoRisk
Analysis ID	: 20-4	812-8552	End	point: Mea	an Dry Weig	ht-mg		CETI	S Version:	CETISv1.	9.6	
Analyzed:	07 J	ul-19 10:35	Ana	ysis: Par	ametric-Two	Sample		Statu	is Level:	1		
_												
Data Transi	form		Alt Hyp					Comparis	on Result			PMSD
Untransform	ned		C > T					1819-DW3	38-SC-1R pa	issed mean	dry weight-	21.31%
Equal Varia	ince t T	wo-Sample	Test									
Sample I	VS	Sample II		Test Stat	Critical	MSD DF	P-Type	P-Value	Decision(a:5%)		
Lab Water C	Control	1819-DW3	38-SC-1R	-0.575	1.86	0.078 8	CDF	0.7095	Non-Signif	icant Effect		
ANOVA Tab	le											
Source Sum Squares Mean Square						DF	F Stat	P-Value	Decision(a:5%)		
Between 0.0014397 0.0014397						1	0.331	0.5810	Non-Signif	icant Effect		
Error 0.0348105 0.0043513						8						
Total		0.0362502				9						
ANOVA Ass	sumptio	ns Tests										
Attribute		Test				Test Stat	Critical	P-Value	Decision(a:1%)		
Variance		Variance F	Ratio F Test			1.02	23.2	0.9859	Equal Vari	ances		
Distribution		Shapiro-W	ilk W Norma	ality Test		0.963	0.741	0.8169	Normal Dis	stribution		
Mean Dry W	Veight-n	ng Summai	гу									
Mean Dry W Sample	/eight-r	ng Summai Code	ry Count	Mean	95% LCL	95% UCL	Median	Min	Max	Std Err	CV%	%Effect
Mean Dry W Sample CE_0620PP	Veight-r	ng Summai Code LW	ry Count 5	Mean 0.364	95% LCL 0.282	95% UCL 0.446	Median 0.388	Min 0.258	Max 0.423	Std Err 0.0296	CV% 18.21%	%Effect 0.00%
Mean Dry W Sample CE_0620PP 1819-DW38	/eight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics	/eight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics	/eight-n -C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics	/eight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5	Veight-r	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5	Veight-r	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5	Veight-n C1 -SC-1R	ng Summal Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4	Veight-n -SC-1R Z	ng Summai Códe LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.08 0.06 0.04 0.04 0.02	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38- Graphics 0.5 0.4	Veight-n -SC-1R Z	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.02 0.00	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.3	Veight-n C1 -SC-1R Z	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 0.00	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4	Veight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.08 0.06 0.04 0.02 0.00 0.02 0.00 0.02 0.00	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.4	Veight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.4	Veight-n -C1 -SC-1R	ng Summal Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.3 0.3 0.2 0.1	Veight-n C1 -SC-1R Z	ng Summal Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 0.	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.3 0.2 0.1	/eight- n - <u>C</u> 1 -SC-1R	ng Summal Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 -0.02 -0.02 -0.04 -0.06 -0.08 -0.08 -0.08	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%
Mean Dry W Sample CE_0620PP 1819-DW38 Graphics 0.5 0.4 0.3 0.2 0.1	Veight-n C1 -SC-1R	ng Summai Code LW	ry Count 5 5	Mean 0.364 0.388	95% LCL 0.282 0.306	95% UCL 0.446 0.47	Median 0.388 0.382 0.10 0.08 0.06 0.04 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.	Min 0.258 0.315	Max 0.423 0.475	Std Err 0.0296 0.0294	CV% 18.21% 16.92%	%Effect 0.00% -6.59%

CETIS Analytical Report

Report Date: 08 Jul-19 16:04 (p 2 of 2) Test Code/ID: CE 0620PP C1 Wt / 05-6628-2349

Analyst: JL QA: M

22/23

Client:	Con	dor Ear	th - Stockton	Test ID #: 7	8635	Project #:	28974	
Sample:		SCI	R	'eight Date: 6/22	19	Sign-off:	TA	
Test Date:	ف	(20/10	9 Final V	Veight Date: 620	ilia	Sign-off:	BM	
Pan	Concentration Replicate		Initial Pan Weight (mg)	Final Pan Weight (mg)	Initial # of	Organisms	Biomass Value (mg)	
1	Control	A+B	407.20	408.89	4	4	on 0.169 0.42	3
2		C+D	469.86	410.89	4	-	81 0.10 30.2	18
3		E+F	404.65	406.20	4	ž,	8 0,1550,38	8
4		G+H	400.00	401.71	4		10,163 0.40	8
5		I+J	406 54	407.92	4		10-1300.34	Б
6	100%	A+B	415.25	416.97	4		18-0.172 0.430	
7		C+D	399.61	400.96	4		8-0-13-50,338	
8		E+F	413-33	414.86	Ч		10.1530.38	2
9		G+H	415.86	417.12	4		10,121,0315	
10		I+J	402-43	404.33	Ч		120-190 0.475	
QA 1		~~	405.29	405.29	-	-		
QA 2	-		410.29	410.201	-	-		
Balance ID			Bal.04	Ba104				

Fathead Minnow Dry Weight Data Sheet